<div class="csl-bib-body">
<div class="csl-entry">Sen, A., & Bilgili, A. (2023). Indoor Mapping Using Machine Learning Based Classification of 3D Point Clouds. In <i>Proceedings of the 18th International Conference on Location Based Services</i> (pp. 77–81). https://doi.org/10.34726/5732</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194743
-
dc.identifier.uri
https://doi.org/10.34726/5732
-
dc.description.abstract
Today, indoor maps remain a valuable source of spatial information for various indoor environments. Classifying 3D point clouds from indoor environments is crucial for indoor mapping. In this study, indoor point clouds from the S3DIS dataset were classified using Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), and Attentive Interpretable Tabular Learning (TabNet). The classification performances, based on overall accuracy and F1 scores, can be ranked as RF, MLP, XGBoost, and TabNet. It has been determined that machine learning algorithms can be used to classify indoor point clouds for indoor mapping.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Indoor mapping
en
dc.subject
machine learning
en
dc.subject
point cloud
en
dc.title
Indoor Mapping Using Machine Learning Based Classification of 3D Point Clouds
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5732
-
dc.contributor.affiliation
Yıldız Technical University, Turkey
-
dc.contributor.affiliation
Yıldız Technical University, Turkey
-
dc.relation.doi
10.34726/5400
-
dc.description.startpage
77
-
dc.description.endpage
81
-
dc.rights.holder
Authors
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 18th International Conference on Location Based Services
-
tuw.relation.ispartof
10.34726/5400
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17202610
-
dc.description.numberOfPages
5
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
18th International Conference on Location Based Services (LBS 2023)