<div class="csl-bib-body">
<div class="csl-entry">Mecklenbräuker, C. F., Gerstoft, P., Ollila, E., & Park, Y. (2023). Robust Sparse Bayesian Learning for DOA. In <i>2023 31st European Signal Processing Conference (EUSIPCO)</i> (pp. 1788–1792). https://doi.org/10.23919/EUSIPCO58844.2023.10289816</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/195184
-
dc.description.abstract
We formulate statistically robust Sparse Bayesian Learning (SBL) for Direction of Arrival (DOA) estimation from Complex Elliptically Symmetric (CES) data using a general approach based on loss functions. Simulation results for DOA estimation are obtained for several choices of loss functions: Gauss, multivariate t (MVT), Huber, and Tyler. The root mean square DOA error is discussed for Gaussian, MVT, and ε-contaminated data. The robust SBL estimators perform well in the presence of outliers and for heavy-tailed data and almost like classical SBL for Gaussian data.
en
dc.language.iso
en
-
dc.subject
sparsity
en
dc.subject
array processing
en
dc.subject
direction of arrival estimation
en
dc.title
Robust Sparse Bayesian Learning for DOA
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of California, San Diego, United States of America (the)
-
dc.contributor.affiliation
Aalto University, Finland
-
dc.contributor.affiliation
University of California, San Diego, United States of America (the)
-
dc.relation.isbn
978-9-4645-9360-0
-
dc.description.startpage
1788
-
dc.description.endpage
1792
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 31st European Signal Processing Conference (EUSIPCO)