<div class="csl-bib-body">
<div class="csl-entry">Georgiou, P., Hajdu, M., & Kovács, L. (2024). <i>Saturating Sorting without Sorts</i>. arXiv. https://doi.org/10.34726/5861</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/195542
-
dc.identifier.uri
https://doi.org/10.34726/5861
-
dc.description.abstract
We present a first-order theorem proving framework for establishing the correctness of functional programs implementing sorting algorithms with recursive data structures.
We formalize the semantics of recursive programs in many-sorted first-order logic and integrate sortedness/permutation properties within our first-order formalization. Rather than focusing on sorting lists of elements of specific first-order theories, such as integer arithmetic, our list formalization relies on a sort parameter abstracting (arithmetic) theories and hence concrete sorts. We formalize the permutation property of lists in first-order logic so that we automatically prove verification conditions of such algorithms purely by superpositon-based first-order reasoning. Doing so, we adjust recent efforts for automating inducion in saturation. We advocate a compositional approach for automating proofs by induction required to verify functional programs implementing and preserving sorting and permutation properties over parameterized list structures. Our work turns saturation-based first-order theorem proving into an automated verification engine by (i) guiding automated inductive reasoning with manual proof splits and (ii) fully automating inductive reasoning in saturation. We showcase the applicability of our framework over recursive sorting algorithms, including Mergesort and Quicksort.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
automated theorem proving
en
dc.subject
saturation-based theorem proving
en
dc.subject
computation induction
en
dc.subject
automated software verification
en
dc.subject
Quicksort
en
dc.title
Saturating Sorting without Sorts
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/5861
-
dc.identifier.arxiv
2403.03712
-
dc.relation.grantno
F 85
-
dc.relation.grantno
ERC Consolidator Grant 2020
-
dc.rights.holder
Authors
-
tuw.project.title
Semantische und kryptografische Grundlagen von Informationssicherheit und Datenschutz durch modulares Design
-
tuw.project.title
Automated Reasoning with Theories and Induction for Software Technologies
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publisher.doi
10.48550/arXiv.2403.03712
-
dc.identifier.libraryid
AC17202730
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0002-8273-2613
-
tuw.author.orcid
0000-0002-8299-2714
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering