<div class="csl-bib-body">
<div class="csl-entry">Beheshti, A., Yang, J., Sheng, M., Benatallah, B., Casati, F., Dustdar, S., Motahari-Nezhad, H.-R., Zhang, X., & Xue, S. (2023). <i>ProcessGPT: Transforming Business Process Management with Generative Artificial Intelligence</i>. arXiv. https://doi.org/10.34726/5947</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/195926
-
dc.identifier.uri
https://doi.org/10.34726/5947
-
dc.description.abstract
Generative Pre-trained Transformer (GPT) is a state-of-the-art machine learning model capable of generating human-like text through natural language processing (NLP). GPT is trained on massive amounts of text data and uses deep learning techniques to learn patterns and relationships within the data, enabling it to generate coherent and contextually appropriate text. This position paper proposes using GPT technology to generate new process models when/if needed. We introduce ProcessGPT as a new technology that has the potential to enhance decision-making in data-centric and knowledge-intensive processes. ProcessGPT can be designed by training a generative pre-trained transformer model on a large dataset of business process data. This model can then be fine-tuned on specific process domains and trained to generate process flows and make decisions based on context and user input. The model can be integrated with NLP and machine learning techniques to provide insights and recommendations for process improvement. Furthermore, the model can automate repetitive tasks and improve process efficiency while enabling knowledge workers to communicate analysis findings, supporting evidence, and make decisions. ProcessGPT can revolutionize business process management (BPM) by offering a powerful tool for process augmentation, automation and improvement. Finally, we demonstrate how ProcessGPT can be a powerful tool for augmenting data engineers in maintaining data ecosystem processes within large bank organizations. Our scenario highlights the potential of this approach to improve efficiency, reduce costs, and enhance the quality of business operations through the automation of data-centric and knowledge-intensive processes. These results underscore the promise of ProcessGPT as a transformative technology for organizations looking to improve their process workflows.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Business Process Management
en
dc.subject
Generative AI
en
dc.subject
Generative Pre-trained Transformer
en
dc.subject
Knowledge-Intensive Processes
en
dc.subject
Data-Centric Processes
en
dc.title
ProcessGPT: Transforming Business Process Management with Generative Artificial Intelligence
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/5947
-
dc.identifier.arxiv
2306.01771
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Dublin City University, Ireland
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2306.01771
-
dc.identifier.libraryid
AC17202956
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-5988-5494
-
tuw.author.orcid
0000-0002-4408-1952
-
tuw.author.orcid
0000-0002-3326-4147
-
tuw.author.orcid
0000-0002-8805-1130
-
tuw.author.orcid
0000-0001-7591-9562
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.author.orcid
0000-0002-6259-5359
-
tuw.author.orcid
0000-0001-7353-4159
-
tuw.author.orcid
0000-0002-9123-5133
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
dc.description.sponsorshipexternal
Centre for Applied Artificial Intelligence at Macquarie University, Sydney, Australia
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1109/ICWS60048.2023.00099
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University
-
crisitem.author.dept
Dublin City University
-
crisitem.author.dept
University of Trento
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.orcid
0000-0002-5988-5494
-
crisitem.author.orcid
0000-0002-3326-4147
-
crisitem.author.orcid
0000-0002-8805-1130
-
crisitem.author.orcid
0000-0001-7591-9562
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.orcid
0000-0002-6259-5359
-
crisitem.author.orcid
0000-0002-9123-5133
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering