<div class="csl-bib-body">
<div class="csl-entry">Zhao, H., Deng, S., Xiang, Z., Yan, X., Yin, J., Dustdar, S., & Zomaya, A. Y. (2023). <i>Scheduling Multi-Server Jobs with Sublinear Regrets via Online Learning</i>. arXiv. https://doi.org/10.34726/5948</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/195928
-
dc.identifier.uri
https://doi.org/10.34726/5948
-
dc.description.abstract
Multi-server jobs that request multiple computing resources and hold onto them during their execution dominate modern computing clusters. When allocating the multi-type resources to several co-located multi-server jobs simultaneously in online settings, it is difficult to make the tradeoff between the parallel computation gain and the internal communication overhead, apart from the resource contention between jobs. To study the computation-communication tradeoff, we model the computation gain as the speedup on the job completion time when it is executed in parallelism on multiple computing instances, and fit it with utilities of different concavities. Meanwhile, we take the dominant communication overhead as the penalty to be subtracted. To achieve a better gain-overhead tradeoff, we formulate an cumulative reward maximization program and design an online algorithm, named OGASched, to schedule multi-server jobs. OGASched allocates the multi-type resources to each arrived job in the ascending direction of the reward gradients. It has several parallel sub-procedures to accelerate its computation, which greatly reduces the complexity. We proved that it has a sublinear regret with general concave rewards. We also conduct extensive trace-driven simulations to validate the performance of OGASched. The results demonstrate that OGASched outperforms widely used heuristics by 11.33%, 7.75%, 13.89%, and 13.44%, respectively.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
multi-server job
en
dc.subject
online gradient ascent
en
dc.subject
online scheduling
en
dc.subject
regret analysis
en
dc.title
Scheduling Multi-Server Jobs with Sublinear Regrets via Online Learning
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/5948
-
dc.identifier.arxiv
2305.06572
-
dc.contributor.affiliation
Zhejiang University, China
-
dc.contributor.affiliation
Zhejiang University, China
-
dc.contributor.affiliation
Hangzhou City University, China
-
dc.contributor.affiliation
Huawei Technologies (China), China
-
dc.contributor.affiliation
Zhejiang University, China
-
dc.contributor.affiliation
University of Sydney, Australia
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2305.06572
-
dc.identifier.libraryid
AC17202404
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0003-1133-5722
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.author.orcid
0000-0002-3090-1059
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
dc.description.sponsorshipexternal
National Key Research and Development Program of China
-
dc.description.sponsorshipexternal
National Science Foundation of China
-
dc.description.sponsorshipexternal
National Science Foundation of China
-
dc.description.sponsorshipexternal
Key Research Project of Zhejiang Province
-
dc.relation.grantnoexternal
Grant 2022YFB4500100
-
dc.relation.grantnoexternal
Grant 62125206
-
dc.relation.grantnoexternal
Grant U20A20173
-
dc.relation.grantnoexternal
Grant 2022C01145
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1109/TSC.2023.3303344
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
Hangzhou City University
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
University of Sydney
-
crisitem.author.orcid
0000-0003-1133-5722
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.orcid
0000-0002-3090-1059
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering