<div class="csl-bib-body">
<div class="csl-entry">Kubin, A., Lussardi, L., & Morandotti, M. (2024). Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs. <i>Journal of Geometric Analysis</i>, <i>34</i>, Article 121. https://doi.org/10.1007/s12220-024-01564-2</div>
</div>
-
dc.identifier.issn
1050-6926
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/196150
-
dc.description.abstract
The existence of minimizers of the Canham–Helfrich functional in the setting of generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional, usually defined on regular surfaces, is extended to generalized Gauss graphs, then lower semicontinuity and compactness are proved under a suitable condition on the bending constants ensuring coerciveness; the minimization follows by the direct methods of the Calculus of Variations. Remarks on the regularity of minimizers and on the behavior of the functional in case there is lack of coerciveness are presented.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Journal of Geometric Analysis
-
dc.subject
Canham–Helfrich functional
en
dc.subject
Energy minimization
en
dc.subject
Generalized Gauss graphs
en
dc.title
Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs