<div class="csl-bib-body">
<div class="csl-entry">Crocetti, L., Schartner, M., Zus, F., Zhang, W., Moeller, G., Navarro, V., See, L., Schindler, K., & Soja, B. (2024). Global, spatially explicit modelling of zenith wet delay with XGBoost. <i>Journal of Geodesy</i>, <i>98</i>(4), Article 23. https://doi.org/10.1007/s00190-024-01829-2</div>
</div>
-
dc.identifier.issn
0949-7714
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/196527
-
dc.description.abstract
Radio signals transmitted by Global Navigation Satellite System (GNSS) satellites experience tropospheric delays. While the hydrostatic part, referred to as zenith hydrostatic delay (ZHD) when mapped to the zenith direction, can be analytically modelled with sufficient accuracy, the wet part, referred to as zenith wet delay (ZWD), is much more difficult to determine and needs to be estimated. Thus, there exist several ZWD models which are used for various applications such as positioning and climate research. In this study, we present a data-driven, global model of the spatial ZWD field, based on the Extreme Gradient Boosting (XGBoost). The model takes the geographical location, the time, and a number of meteorological variables (in particular, specific humidity at several pressure levels) as input, and can predict ZWD anywhere on Earth as long as the input features are available. It was trained on ZWDs at 10718 GNSS stations and tested on ZWDs at 2684 GNSS stations for the year 2019. Across all test stations and all observations, the trained model achieved a mean absolute error of 6.1 mm, respectively, a root mean squared error of 8.1 mm. Comparisons of the XGBoost-based ZWD predictions with independently computed ZWDs and baseline models underline the good performance of the proposed model. Moreover, we analysed regional and monthly models, as well as the seasonal behaviour of the ZWD predictions in different climate zones, and found that the global model exhibits a high predictive skill in all regions and across all months of the year.
en
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
Journal of Geodesy
-
dc.subject
Zenith wet delay (ZWD)
en
dc.subject
Global predictions
en
dc.subject
Machine learning (ML)
en
dc.subject
XGBoost
en
dc.subject
GNSS
en
dc.title
Global, spatially explicit modelling of zenith wet delay with XGBoost
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Germany
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
European Space Agency, Spain
-
dc.contributor.affiliation
International Institute for Applied Systems Analysis, Austria
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.type.category
Original Research Article
-
tuw.container.volume
98
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
Journal of Geodesy
-
tuw.publication.orgunit
E120-04 - Forschungsbereich Höhere Geodäsie
-
tuw.publisher.doi
10.1007/s00190-024-01829-2
-
dc.identifier.articleid
23
-
dc.identifier.eissn
1432-1394
-
tuw.author.orcid
0000-0003-2538-4111
-
tuw.author.orcid
0000-0001-5855-7280
-
tuw.author.orcid
0000-0003-1243-0481
-
tuw.author.orcid
0000-0002-6153-3084
-
tuw.author.orcid
0000-0002-7381-3470
-
tuw.author.orcid
0000-0002-2665-7065
-
tuw.author.orcid
0000-0002-3172-9246
-
tuw.author.orcid
0000-0002-7010-2147
-
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E120-01-2 - Forschungsgruppe Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-04 - Forschungsbereich Höhere Geodäsie
-
crisitem.author.dept
GFZ Helmholtz Centre for Geosciences
-
crisitem.author.dept
ETH Zurich
-
crisitem.author.dept
E120-04 - Forschungsbereich Höhere Geodäsie
-
crisitem.author.dept
European Space Astronomy Centre
-
crisitem.author.dept
International Institute for Applied Systems Analysis
-
crisitem.author.dept
ETH Zurich
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing