<div class="csl-bib-body">
<div class="csl-entry">Vana Gür, L., Visconti, E., Nenzi, L., Cadonna, A., & Kastner, G. (2022). <i>Posterior predictive model assessment using formal methods in a spatio-temporal model</i>. arXiv. https://doi.org/10.48550/arXiv.2110.01360</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/196640
-
dc.description.abstract
We propose an interdisciplinary framework, Bayesian formal predictive model assessment. It combines Bayesian predictive inference, a well established tool in statistics, with formal verification methods rooting in the computer science community. Bayesian predictive inference allows for coherently incorporating uncertainty about unknown quantities by making use of methods or models that produce predictive distributions, which in turn inform decision problems. By formalizing these problems and the corresponding properties, we can use spatio-temporal reach and escape logic to formulate and probabilistically assess their satisfaction. This way, competing models can directly be compared based on their ability to predict the property satisfaction a posteriori. The approach is illustrated on an urban mobility application, where the crowdedness in the center of Milan is proxied by aggregated mobile phone traffic data. We specify several desirable spatio-temporal properties related to city crowdedness such as a fault-tolerant network or the reachability of hospitals. After verifying these properties on draws from the posterior predictive distributions, we compare several spatio-temporal Bayesian models based on their overall and property-based predictive performance.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Posterior predictive model checking
en
dc.subject
Spatio-Temporal Logic
en
dc.subject
Bayesian inference
en
dc.title
Posterior predictive model assessment using formal methods in a spatio-temporal model
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2110.01360
-
dc.contributor.affiliation
University of Trieste, Italy
-
dc.contributor.affiliation
University of Klagenfurt, Austria
-
dc.contributor.affiliation
University of Klagenfurt, Austria
-
dc.relation.grantno
ZK 35-G
-
tuw.project.title
Hochdimensionales statistisches Lernen: Neue Methoden zur Förderung der Wirtschafts- und Nachhaltigkeitspolitik