E105-06 - Forschungsbereich Computational Statistics E384-01 - Forschungsbereich Software-intensive Systems
-
Journal:
JOURNAL OF STATISTICAL SOFTWARE
-
ISSN:
1548-7660
-
Date (published):
Feb-2024
-
Number of Pages:
49
-
Publisher:
JOURNAL STATISTICAL SOFTWARE
-
Peer reviewed:
Yes
-
Keywords:
algorithmic regression; best subset selection; conic programming; holistic constraints; optimization; R
en
Abstract:
Holistic linear regression extends the classical best subset selection problem by adding additional constraints designed to improve the model quality. These constraints include sparsity-inducing constraints, sign-coherence constraints and linear constraints. The R package holiglm provides functionality to model and fit holistic generalized linear models. By making use of state-of-the-art mixed-integer conic solvers, the package can reliably solve generalized linear models for Gaussian, binomial and Poisson responses with a multitude of holistic constraints. The high-level interface simplifies the constraint specification and can be used as a drop-in replacement for the stats::glm() function.
en
Project title:
Hochdimensionales statistisches Lernen: Neue Methoden zur Förderung der Wirtschafts- und Nachhaltigkeitspolitik: ZK 35-G (FWF - Österr. Wissenschaftsfonds)
-
Research Areas:
Mathematical and Algorithmic Foundations: 40% Computer Engineering and Software-Intensive Systems: 10% Modeling and Simulation: 50%