<div class="csl-bib-body">
<div class="csl-entry">Demkowicz, L., Melenk, J. M., Badger, J., & Henneking, S. (2024). Stability analysis for electromagnetic waveguides. Part 2: non-homogeneous waveguides. <i>Advances in Computational Mathematics</i>, <i>50</i>(3), Article 35. https://doi.org/10.1007/s10444-024-10130-x</div>
</div>
-
dc.identifier.issn
1019-7168
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197098
-
dc.description.abstract
This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023) [5], extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length L. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1.
en
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Advances in Computational Mathematics
-
dc.subject
Electromagnetic waveguides
en
dc.subject
Well-posedness analysis
en
dc.subject
Perturbation of self-adjoint eigenvalue problems
en
dc.title
Stability analysis for electromagnetic waveguides. Part 2: non-homogeneous waveguides
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)