<div class="csl-bib-body">
<div class="csl-entry">Wess, M., Codecasa, L., Kapidani, B., & Schöberl, J. (2024, April 17). <i>Mass-Lumped High-Order Cell Methods for Time-Dependent Maxwell Equations</i> [Conference Presentation]. 16th Annual Meeting Photonic Devices (AMPD 2024), Berlin, Germany. http://hdl.handle.net/20.500.12708/197170</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197170
-
dc.description.abstract
We are concerned with the efficient numerical approximation of solutions of the time-domain linear Maxwell system. Methods like the classical finite-difference time-domain method or finite integration techniques rely on the approximation of the electric and the magnetic field on two interlaced (Cartesian) grids respectively. Our method expands this idea to general tetrahedral meshes by defining a dual grid using the barycentric subdivision of the primal mesh, resulting in a decomposition into hexahedra. Contrary to previous approaches we use Lagrangian polynomial basis functions with respect to tensor product integration points on the unit cube that are subsequently re-mapped to the hexahedra which form the physical elements of the primal and dual grids respectively. This approach provides generically computable, stable high-order bases. We use leap frog time-stepping (or high-order variants thereof) for the time discretization which only requires the application of the discrete differential operators and the inverse mass matrices in each time step. Using lumped mass matrices with respect to the defining points of the basis functions leads to block diagonal mass matrices with block-size independent of the polynomial degree. Numerical experiments underline the facts that the resulting algorithm provides converging, spurious-free solutions and is efficient, compared to competing methods.
en
dc.language.iso
en
-
dc.subject
time-domain Maxwell equations
en
dc.subject
explicit time-stepping
en
dc.subject
Discontinuous Galerkin
en
dc.title
Mass-Lumped High-Order Cell Methods for Time-Dependent Maxwell Equations
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.author.orcid
0000-0001-6323-0821
-
tuw.author.orcid
0000-0001-7369-4400
-
tuw.event.name
16th Annual Meeting Photonic Devices (AMPD 2024)
en
tuw.event.startdate
17-04-2024
-
tuw.event.enddate
19-04-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Berlin
-
tuw.event.country
DE
-
tuw.event.institution
Zuse Institute Berlin
-
tuw.event.presenter
Wess, Markus
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.openairetype
conference paper not in proceedings
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
Politecnico di Milano
-
crisitem.author.dept
École Polytechnique Fédérale de Lausanne
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing