<div class="csl-bib-body">
<div class="csl-entry">Cuyt, A., Melenk, J. M., Sauter, S. A., & Xu, Y. (2023). Mini-Workshop: Multivariate Orthogonal Polynomials: New synergies with Numerical Analysis. <i>Oberwolfach Reports</i>, <i>20</i>(3), 2489–2534. https://doi.org/10.4171/owr/2023/43</div>
</div>
-
dc.identifier.issn
1660-8933
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197551
-
dc.description.abstract
Multivariate polynomials and, in particular, multivariate orthogonal polynomials (MOPs) are research areas within the fields of special functions, Lie groups, quantum groups, computer algebra to name only some of them. However, there are many important areas in the field of numerical analysis where multivariate polynomials (of high order) play a crucial role: approximation by spectral methods and finite elements, discrete calculus, polynomial trace liftings, exact sequence properties, sparsity, efficient and stable recursions, analysis of the geometry of the zeros. The miniworkshop brought together experts from the fields of MOPs and numerical analysis of partial differential equations.
en
dc.language.iso
en
-
dc.publisher
EMS Press
-
dc.relation.ispartof
Oberwolfach Reports
-
dc.subject
wave propagation
en
dc.subject
high order finite element methods
en
dc.title
Mini-Workshop: Multivariate Orthogonal Polynomials: New synergies with Numerical Analysis
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Stirling, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Zurich, Switzerland
-
dc.contributor.affiliation
University of Oregon, United States of America (the)