<div class="csl-bib-body">
<div class="csl-entry">Brenner, S. (2024). <i>Multi-Light Imaging for Graphical Heritage</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.122403</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.122403
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197553
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Historical artifacts in the category of graphical heritage are characterized by localized modifications of physical surfaces to convey textual or pictorial contents, such as manuscripts, drawings, engravings or reliefs. When affected by natural degradation or purposeful alterations, contents may be inaccessible with the naked eye or conventional digitization methods. Multi-light imaging involves capturing an object under various lighting conditions, encompassing multispectral imaging (variation in light spectra) and photometric stereo (variation in light directions). Multispectral imaging is used to record chemical surface variations resulting from inks and pigments, while photometric stereo captures variations in surface geometry and depth. By focusing on low-level operations such as image acquisition, calibration, shape reconstruction and visualization, the thesis caters to the needs of humanist scholars who require high-quality interpretable imagery for their investigations: A mobile image acquisition system is described, complemented by approaches for measuring and compensating longitudinal chromatic aberrations occurring in multispectral imaging, and heuristics for post-processing and calibration. In the field of photometric stereo, efficient light source configurations for mostly flat surfaces are evaluated and an analysis of the errors introduced by a simplified lighting model is conducted, which gives rise to a general error mitigation strategy. A case study in which poems are retrieved from indentations in paper demonstrates the practical applicability of these contributions. Another line of work is concerned with developing methods for evaluating the quality of graphical heritage imagery - in particular, with objectively assessing human text legibility in images. To this end, a novel dataset of manuscript images, rated for legibility by humanist scholars, is introduced. Being created with a novel study design, the expert ratings obtained are statistically validated. The dataset is then used to test potential quantitative estimators for text legibility in images.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
photometric stereo
en
dc.subject
error analysis
en
dc.subject
multispectral imaging
en
dc.subject
calibration
en
dc.subject
focus shift
en
dc.subject
cultural heritage
en
dc.subject
image quality assessment
en
dc.subject
legibility assessment
en
dc.title
Multi-Light Imaging for Graphical Heritage
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.122403
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Simon Brenner
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17187449
-
dc.description.numberOfPages
126
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0001-6909-7099
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-4195-1593
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openaccessfulltext
Open Access
-
item.openairetype
doctoral thesis
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0001-6909-7099
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology