<div class="csl-bib-body">
<div class="csl-entry">Domínguez Corella, A., Jork, N., Nečasová, Š., & Simon, J. S. (2024). Stability analysis of the Navier–Stokes velocity tracking problem with bang-bang controls. <i>Journal of Optimization Theory and Applications</i>, <i>201</i>(2), 790–824. https://doi.org/10.1007/s10957-024-02413-6</div>
</div>
-
dc.identifier.issn
0022-3239
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197845
-
dc.description.abstract
This paper focuses on the stability of solutions for a velocity-tracking problem associated with the two-dimensional Navier–Stokes equations. The considered optimal control problem does not possess any regularizer in the cost, and hence bang-bang solutions can be expected. We investigate perturbations that account for uncertainty in the tracking data and the initial condition of the state, and analyze the convergence rate of solutions when the original problem is regularized by the Tikhonov term. The stability analysis relies on the Hölder subregularity of the optimality mapping, which stems from the necessary conditions of the problem.
en
dc.language.iso
en
-
dc.publisher
SPRINGER/PLENUM PUBLISHERS
-
dc.relation.ispartof
Journal of Optimization Theory and Applications
-
dc.subject
49K20
en
dc.subject
49K30
en
dc.subject
49K40
en
dc.subject
76D05
en
dc.subject
Navier–Stokes equations
en
dc.subject
Optimality conditions
en
dc.subject
Stability analysis
en
dc.subject
Tikhonov regularization
en
dc.title
Stability analysis of the Navier–Stokes velocity tracking problem with bang-bang controls