<div class="csl-bib-body">
<div class="csl-entry">Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. In <i>Austrian Numerical Analysis Day 2024, 16– 17 May 2024: Abstracts</i> (pp. 9–9). http://hdl.handle.net/20.500.12708/197906</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/197906
-
dc.language.iso
en
-
dc.subject
adaptive finite element method
en
dc.subject
optimal convergence rates
en
dc.subject
cost-optimality
en
dc.subject
inexact solver
en
dc.subject
full linear convergence
en
dc.title
On full linear convergence and optimal complexity of adaptive FEM with inexact solver
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
9
-
dc.description.endpage
9
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Austrian Numerical Analysis Day 2024, 16– 17 May 2024: Abstracts
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-4546-5165
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.event.name
ANADAY 2024: 18th Austrian Numerical Analysis Day
en
tuw.event.startdate
16-05-2024
-
tuw.event.enddate
17-05-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Innsbruck
-
tuw.event.country
AT
-
tuw.event.institution
Universität Innsbruck
-
tuw.event.presenter
Bringmann, Philipp
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing