<div class="csl-bib-body">
<div class="csl-entry">Miraci, A., Praetorius, D., & Streitberger, J. (2024). <i>Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs</i>. arXiv. https://doi.org/10.48550/arXiv.2401.17778</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198146
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
adaptive finite element method
en
dc.subject
optimal convergence rates
en
dc.subject
cost-optimality
en
dc.subject
iterative linearization
en
dc.subject
inexact solver
en
dc.subject
full linear convergence
en
dc.title
Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2401.17778
-
dc.relation.grantno
I 6802-N
-
dc.relation.grantno
P 33216-N
-
tuw.project.title
Funktionale Fehlerschätzungen für PDEs auf unbegrenzten Domänen
-
tuw.project.title
Computational nonlinear PDEs
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
tuw.publisher.doi
10.48550/arXiv.2401.17778
-
dc.description.numberOfPages
24
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing