<div class="csl-bib-body">
<div class="csl-entry">Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). <i>On full linear convergence and optimal complexity of adaptive FEM with inexact solver</i>. arXiv. https://doi.org/10.48550/arXiv.2311.15738</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198154
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
adaptive finite element method
en
dc.subject
optimal convergence rates
en
dc.subject
cost-optimality
en
dc.subject
inexact solver
en
dc.subject
full linear convergence
en
dc.title
On full linear convergence and optimal complexity of adaptive FEM with inexact solver
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2311.15738
-
dc.relation.grantno
I 6802-N
-
dc.relation.grantno
P 33216-N
-
tuw.project.title
Funktionale Fehlerschätzungen für PDEs auf unbegrenzten Domänen
-
tuw.project.title
Computational nonlinear PDEs
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
tuw.publisher.doi
10.48550/arXiv.2311.15738
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0000-0002-4546-5165
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.openairetype
preprint
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
I 6802-N
-
crisitem.project.grantno
P 33216-N
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing