<div class="csl-bib-body">
<div class="csl-entry">Cappello, C., Piccolotto, N., Mühlmann, C., Bögl, M., Filzmoser, P., Miksch, S., & Nordhausen, K. (2024). Visual Interactive Parameter Selection for Temporal Blind Source Separation. <i>Journal of Data Science, Statistics, and Visualisation</i>, <i>4</i>(3). https://doi.org/10.52933/jdssv.v4i3.82</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198481
-
dc.description.abstract
Many fields of science and industry collect and analyze multivariate time-varying measurements, e.g., healthcare, geophysics, or finance. Such data is oftenhigh-dimensional, correlated, and noisy. Experts are interested in latent compo-nents of the dataset, but due to the properties above, these are difficult to ob-tain. Temporal Blind Source Separation (TBSS) is a suitable and well-establishedframework for these data. However, the wide choice of methods and their tuningparameters impede the effective use of TBSS in practice. Visual Analytics (VA)aims to create powerful analytic tools by combining the strengths of humans andcomputers. We designed, developed, and evaluated VA contributions in previouswork to support TBSS-related analysis tasks. This paper highlights the benefitsand opportunities of VA concepts for statistics-oriented problems. We demon-strate how their analysis workflow can be supported using an important TBSSapplication example with a real-world dataset of meteorological measurements in Italy.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
International Association for Statistical Computing (IASC)
-
dc.relation.ispartof
Journal of data science, statistics, and visualisation
-
dc.subject
time series
en
dc.subject
dimension reduction
en
dc.subject
model selection
en
dc.subject
Visual Analytics
en
dc.title
Visual Interactive Parameter Selection for Temporal Blind Source Separation
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Salento, Italy
-
dc.relation.grantno
P 31881-N32
-
dc.type.category
Original Research Article
-
tuw.container.volume
4
-
tuw.container.issue
3
-
tuw.peerreviewed
false
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Blind Source Separation in Time and Space
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.linking
https://jdssv.org/index.php/jdssv/article/view/82
-
dcterms.isPartOf.title
Journal of data science, statistics, and visualisation