<div class="csl-bib-body">
<div class="csl-entry">Arslan, E., & Haskul, M. (2023). Fracture Behavior Prediction of a High-Strength Aluminum Alloy under Multiaxial Loading. In <i>Proceedings of the 9th World Congress on Mechanical, Chemical, and Material Engineering (MCM’23)</i>. 9th World Congress on Mechanical, Chemical, and Material Engineering (MCM’23), London, United Kingdom of Great Britain and Northern Ireland (the). https://doi.org/10.11159/icmie23.143</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198665
-
dc.description.abstract
This study presents a triaxiality analysis and fracture behavior prediction of a high-strength aluminum alloy, specifically AW5754, under multiaxial loading conditions. The primary objective is to obtain a triaxiality locus, which depicts the relationship between the equivalent plastic strain to fracture and the stress triaxiality factor. This locus provides comprehensive insights into the fracture behavior of the material under various stress states. Experimental tests employing various specimen geometries are conducted to acquire essential data for analysis and to facilitate the development of a finite element (FE) model. Quasi-static uniaxial tensile tests are performed on five different specimen types, and accurate deformation measurements are obtained using extensometers at critical locations. The simulation results from the FE models are then compared with the experimental measurements to ensure their accuracy. The developed FE models are used to calculate the equivalent fracture strain and stress triaxiality factor with the help of collected test data. These calculations enable the generation of a stress triaxiality locus through a curve-fitting process. An exponential curve fitting function is chosen to appropriately relate the equivalent plastic strain to the fracture and stress state for the AW5754 aluminum alloy. The resulting stress triaxiality locus serves as a valuable tool for predicting fracture strain and evaluating stress states more accurately. The outcomes of this study contribute significantly to our understanding of the fracture behavior exhibited by high-strength aluminum alloys under multiaxial loading conditions.
en
dc.language.iso
en
-
dc.subject
finite element simulation
en
dc.subject
fracture behavior
en
dc.subject
High-strength aluminum alloys
en
dc.subject
multiaxial loading
en
dc.subject
triaxiality locus
en
dc.title
Fracture Behavior Prediction of a High-Strength Aluminum Alloy under Multiaxial Loading
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Şırnak University, Turkey
-
dc.relation.isbn
978-1-990800-27-6
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 9th World Congress on Mechanical, Chemical, and Material Engineering (MCM'23)
-
tuw.researchTopic.id
M3
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Metallic Materials
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E325-01 - Forschungsbereich Technische Dynamik und Fahrzeugdynamik
-
tuw.publisher.doi
10.11159/icmie23.143
-
dc.description.numberOfPages
8
-
tuw.event.name
9th World Congress on Mechanical, Chemical, and Material Engineering (MCM'23)
en
dc.description.sponsorshipexternal
Sirnak University
-
dc.relation.grantnoexternal
2022.FNAP.06.05.02
-
tuw.event.startdate
06-08-2023
-
tuw.event.enddate
08-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
London
-
tuw.event.country
GB
-
tuw.event.presenter
Arslan, Eray
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Werkstofftechnik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2050
-
wb.sciencebranch.value
75
-
wb.sciencebranch.value
25
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E325-01 - Forschungsbereich Technische Dynamik und Fahrzeugdynamik