<div class="csl-bib-body">
<div class="csl-entry">Laso Rodriguez, R., Krupitza, D., & Hunold, S. (2024). <i>pSTL-Bench: A Micro-Benchmark Suite for Assessing Scalability of C++ Parallel STL Implementations</i>. arXiv. https://doi.org/10.48550/arXiv.2402.06384</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198793
-
dc.description.abstract
Since the advent of parallel algorithms in the C++17 Standard Template Library (STL), the STL has become a viable framework for creating performance-portable applications. Given multiple existing implementations of the parallel algorithms, a systematic, quantitative performance comparison is essential for choosing the appropriate implementation for a particular hardware configuration.
In this work, we introduce a specialized set of micro-benchmarks to assess the scalability of the parallel algorithms in the STL. By selecting different backends, our micro-benchmarks can be used on multi-core systems and GPUs.
Using the suite, in a case study on AMD and Intel CPUs and NVIDIA GPUs, we were able to identify substantial performance disparities among different implementations, including GCC+TBB, GCC+HPX, Intel's compiler with TBB, or NVIDIA's compiler with OpenMP and CUDA.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Performance Portability
en
dc.subject
C++
en
dc.subject
Standard Template Library
en
dc.subject
Threading Building Blocks
en
dc.subject
OpenMP
en
dc.subject
CUDA
en
dc.title
pSTL-Bench: A Micro-Benchmark Suite for Assessing Scalability of C++ Parallel STL Implementations
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.arxiv
2402.06384
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems