<div class="csl-bib-body">
<div class="csl-entry">Hollendonner, S., Alinaghi, N., & Giannopoulos, I. (2024). Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep Learning and Spectral Bands. In A. Heppenstall, M. Wang, U. Demsar, R. Lemmens, & J. Yao (Eds.), <i>Proceedings of the 27th AGILE Conference on Geographic Information Science</i> (pp. 1–11). Copernicus Publications. https://doi.org/10.5194/agile-giss-5-6-2024</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198871
-
dc.description.abstract
Updating road networks in rapidly changing urban landscapes is an important but difficult task, often challenged by the complexity and errors of manual mapping processes. Traditional methods that primarily use RGB satellite imagery struggle with obstacles in the environment and varying road structures, leading to limitations in global data processing. This paper presents an innovative approach that utilizes deep learning and multispectral satellite imagery to improve road network extraction and mapping. By exploring U-Net models with DenseNet backbones and integrating different spectral bands we apply semantic segmentation and extensive post-processing techniques to create georeferenced road networks. We trained two identical models to evaluate the impact of using images created from specially selected multispectral bands rather than conventional RGB images. Our experiments demonstrate the positive impact of using multispectral bands, by improving the results of the metrics Intersection over Union (IoU) by 6.5%, F1 by 5.4%, and the newly proposed relative graph edit distance (relGED) and topology metrics by 2.2% and 2.6% respectively.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Road Network Extraction
en
dc.subject
Semantic Segmentation
en
dc.subject
Multispectral Imagery
en
dc.subject
Remote Sensing
en
dc.title
Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep Learning and Spectral Bands
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
University of Glasgow, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of Glasgow, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of St Andrews, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of Twente, Netherlands (the)
-
dc.contributor.editoraffiliation
University of Glasgow, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
1
-
dc.description.endpage
11
-
dc.rights.holder
Hollendonner, S., Alinaghi, N., and Giannopoulos, I.
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 27th AGILE Conference on Geographic Information Science
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Copernicus Publications
-
tuw.relation.publisherplace
Göttingen, Germany
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120-02 - Forschungsbereich Geoinformation
-
tuw.publisher.doi
10.5194/agile-giss-5-6-2024
-
dc.identifier.libraryid
AC17325266
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0001-6594-4481
-
tuw.author.orcid
0000-0002-2556-5230
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-0663-3437
-
tuw.editor.orcid
0000-0001-7791-2807
-
tuw.editor.orcid
0000-0001-5269-6343
-
tuw.event.name
27th AGILE Conference on Geographic Information Science (2024)
en
tuw.event.startdate
04-06-2024
-
tuw.event.enddate
07-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Glasgow
-
tuw.event.country
GB
-
tuw.event.institution
Association of Geographic Information Laboratories in Europe (AGILE)