<div class="csl-bib-body">
<div class="csl-entry">Godolja, D., Kolb, T. E., & Neidhardt, J. (2024). Unlocking the Potential of Content-Based Restaurant Recommender Systems. In A. Tuomi (Ed.), <i>Information and Communication Technologies in Tourism 2024</i> (pp. 239–244). Springer, Cham. https://doi.org/10.1007/978-3-031-58839-6_26</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/198886
-
dc.description.abstract
Content-based restaurant recommender systems use features such as cuisine type, price range, and location to suggest dining options to users. Current research explores ways to improve their effectiveness. In this work, we explore different ideas on how to build a recommender system. We explore TF-IDF as a baseline and the state-of-the-art model SBERT. These ideas are tested on a real-world data-set of a digital restaurant guide. Evaluation involves both qualitative assessment by a domain expert and quantitative analysis. The results show that, with proper preprocessing, TF-IDF can achieve similar scores to SBERT and, depending on the scenario, even better results. However, SBERT still provides more novel recommendations than TF-IDF. Depending on the scenario, both models can be used to generate meaningful restaurant recommendations. However, more implicit aspects like a restaurant’s atmosphere can hardly be captured by these models.
en
dc.description.sponsorship
Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.relation.ispartofseries
Springer Proceedings in Business and Economics
-
dc.subject
content-based restaurant recommender systems
en
dc.subject
domain-expert interview
en
dc.subject
real-world data-set
en
dc.title
Unlocking the Potential of Content-Based Restaurant Recommender Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
University of Surrey, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-3-031-58839-6
-
dc.relation.doi
10.1007/978-3-031-58839-6
-
dc.description.startpage
239
-
dc.description.endpage
244
-
dc.relation.grantno
CDL Neidhardt
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Information and Communication Technologies in Tourism 2024
-
tuw.relation.publisher
Springer, Cham
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-031-58839-6_26
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-0086-1658
-
tuw.author.orcid
0000-0002-2340-0854
-
tuw.author.orcid
0000-0001-7184-1841
-
tuw.editor.orcid
0000-0002-0515-1313
-
tuw.event.name
ENTER 2024 International ETourism Conference
en
tuw.event.startdate
17-01-2024
-
tuw.event.enddate
19-01-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
İzmir
-
tuw.event.country
TR
-
tuw.event.presenter
Kolb, Thomas Elmar
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-0086-1658
-
crisitem.author.orcid
0000-0002-2340-0854
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering