<div class="csl-bib-body">
<div class="csl-entry">Kazeykina, A., Ren, Z., Tan, X., & Yang, J. (2024). Ergodicity of the underdamped mean-field Langevin dynamics. <i>Annals of Applied Probability</i>, <i>34</i>(3), 3181–3226. https://doi.org/10.1214/23-AAP2036</div>
</div>
-
dc.identifier.issn
1050-5164
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199053
-
dc.description.abstract
We study the long time behavior of an underdamped mean-field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide some numerical examples of the algorithm to train a generative adversarial network (GAN).
en
dc.language.iso
en
-
dc.publisher
INST MATHEMATICAL STATISTICS-IMS
-
dc.relation.ispartof
Annals of Applied Probability
-
dc.subject
coupling
en
dc.subject
ergodicity
en
dc.subject
GAN
en
dc.subject
Underdamped mean-field Langevin dynamics
en
dc.title
Ergodicity of the underdamped mean-field Langevin dynamics