<div class="csl-bib-body">
<div class="csl-entry">Codecasa, L., Kapidani, B., Schöberl, J., & Wess, M. (2024). Mass-lumped high-order cell methods for the time-dependent Maxwell’s equations. In L. Gizon (Ed.), <i>Book of Abstracts: The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)</i> (pp. 353–354). http://hdl.handle.net/20.500.12708/199091</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199091
-
dc.description.abstract
Our goal is the efficient numerical approximation of solutions to the time-domain linear Max-well system. Methods like the classical finite-difference time-domain method rely on the approximation of the electric and the magnetic
field on two interlaced (Cartesian) grids respectively. Our method expands this idea to general triangular/tetrahedral meshes by defining a dual grid using the barycentric subdivision of the primal mesh. The resulting primal and dual ements are both composed of the same set of quadrilateral (in 2d) and hexahedral (in 3d) cells. We use Lagrangian polynomial basis functions with respect to tensor product integration points on the unit square/cube which are mapped to the physical cells and suitably combined to obtain differing, element-wise conforming bases on the dual and primal mesh respectively. This approach provides generically computable, stable high order bases. Using lumped mass matrices with respect to the defining points of the basis functions leads to block diagonal mass matrices with block-size independent of the polynomial degree. Thus the combination of the spatial discretization with explicit time-stepping schemes yields an efficient method with very little memory requirement.
en
dc.language.iso
en
-
dc.subject
time-domain Maxwell equations
en
dc.subject
explicit time-stepping
en
dc.subject
Discontinuous Galerkin
en
dc.subject
cell method
en
dc.subject
dual grids
en
dc.subject
mass lumping
en
dc.title
Mass-lumped high-order cell methods for the time-dependent Maxwell's equations
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.editoraffiliation
Max Planck Institute for Solar System Research, Germany
-
dc.relation.doi
10.17617/3.MBE4AA
-
dc.description.startpage
353
-
dc.description.endpage
354
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Book of Abstracts: The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
dc.description.numberOfPages
2
-
tuw.author.orcid
0000-0001-6323-0821
-
tuw.editor.orcid
0000-0001-7696-8665
-
tuw.event.name
16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)
en
tuw.event.startdate
30-06-2024
-
tuw.event.enddate
05-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Berlin
-
tuw.event.country
DE
-
tuw.event.institution
Max-Planck-Institut
-
tuw.event.presenter
Wess, Markus
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.author.dept
Politecnico di Milano
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling