<div class="csl-bib-body">
<div class="csl-entry">Halla, M., Kachanovska, M., & Wess, M. (2024). Radial perfectly matched layers and infinite elements for the anisotropic wave equation. In L. Gizon (Ed.), <i>Book of Abstracts: The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)</i> (pp. 406–407). http://hdl.handle.net/20.500.12708/199092</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199092
-
dc.description.abstract
It is well known [1] that anisotropic materials can lead to instabilities for perfectly matched layer (PML) methods, and in particular a successful modification of PMLs to treat general anisotropic elastodynamic problems is still an
open problem. To study this question we consider radial PMLs for the scalar anisotropic wave equation. We discuss the origin of the instabilities of convenient PMLs, which can be traced back to an (additional) essential spectrum of the Laplace transformed problem. Following [2] we show that a suitable complex frequency shifted PML scaling removes the former troublesome spectrum. However, this approach does not permit to increase the damping constant and we are left without a meaningful mechanism to decrease the truncation error. As a remedy we
apply truncation free approximations such as Hardy space infinite elements and certain “exact” PML methods. We report computational studies confirming the stability of the new numerical methods.
en
dc.language.iso
en
-
dc.subject
time-domain PMLs
en
dc.subject
absorbing boundaries
en
dc.subject
anisotropic materials
en
dc.subject
perfectly matched layers
en
dc.subject
Hardy space infinite elements
en
dc.subject
anisotropic wave equation
en
dc.title
Radial perfectly matched layers and infinite elements for the anisotropic wave equation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Johann Radon Institute for Computational and Applied Mathematics, Austria
-
dc.contributor.affiliation
Institut Polytechnique de Paris, France
-
dc.contributor.editoraffiliation
Max Planck Institute for Solar System Research, Germany
-
dc.relation.doi
10.17617/3.MBE4AA
-
dc.description.startpage
406
-
dc.description.endpage
407
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Book of Abstracts: The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
dc.description.numberOfPages
2
-
tuw.author.orcid
0000-0001-9991-9874
-
tuw.author.orcid
0000-0001-6323-0821
-
tuw.editor.orcid
0000-0001-7696-8665
-
tuw.event.name
16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024)
en
tuw.event.startdate
30-06-2024
-
tuw.event.enddate
05-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Berlin
-
tuw.event.country
DE
-
tuw.event.institution
Max-Planck-Institut
-
tuw.event.presenter
Wess, Markus
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
Institut Polytechnique de Paris
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0001-9991-9874
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling