<div class="csl-bib-body">
<div class="csl-entry">Jelbart, S. (2024). Rate and Bifurcation Induced Transitions in Asymptotically Slow-Fast Systems. <i>SIAM Journal on Applied Dynamical Systems</i>, <i>23</i>(3), 1836–1869. https://doi.org/10.1137/24M1632000</div>
</div>
-
dc.identifier.issn
1536-0040
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199124
-
dc.description.abstract
This work provides a geometric approach to the study of bifurcation and rate induced transitions in a class of nonautonomous systems referred to herein as asymptotically slow-fast systems, which may be viewed as "intermediate" between the (smaller, resp., larger) classes of asymptotically autonomous and nonautonomous systems. After showing that the relevant systems can be viewed as singular perturbations of a limiting system with a discontinuity in time, we develop an analytical framework for their analysis based on geometric blow-up techniques. We then provide sufficient conditions for the occurrence of bifurcation and rate induced transitions in low dimensions, as well as sufficient conditions for "tracking" in arbitrary (finite) dimensions, i.e., the persistence of an attracting and normally hyperbolic manifold through the transitionary regime. The proofs rely on geometric blow-
up, a variant of the Melnikov method which applies on noncompact domains, and general invariant manifold theory. The formalism is applicable in arbitrary (finite) dimensions, and for systems with forward and backward attractors characterized by nontrivial (i.e., nonconstant) dependence on time. The results are demonstrated for low dimensional applications.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Applied Dynamical Systems
-
dc.subject
critical transitions
en
dc.subject
singular perturbations
en
dc.subject
geometric blow-up
en
dc.subject
nonautonomous systems
en
dc.subject
tipping phenomena
en
dc.title
Rate and Bifurcation Induced Transitions in Asymptotically Slow-Fast Systems
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
1836
-
dc.description.endpage
1869
-
dc.type.category
Original Research Article
-
tuw.container.volume
23
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
SIAM Journal on Applied Dynamical Systems
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
tuw.publisher.doi
10.1137/24M1632000
-
dc.identifier.eissn
1536-0040
-
dc.description.numberOfPages
34
-
tuw.author.orcid
0000-0001-8539-320X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.orcid
0000-0001-8539-320X
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing