<div class="csl-bib-body">
<div class="csl-entry">Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2024). Cost-optimal goal-oriented adaptive FEM with nested iterative solvers. In <i>Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10)</i> (pp. 72–72).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199285
-
dc.description.abstract
Based on (Bringmann, Brunner, Praetorius, Streitberger: 2024), this talk presents a cost-optimal goal-oriented adaptive FEM (GOAFEM) algorithm for the efficient computation of a goal value \(G(u^\star)\) for the solution \(u^\star\) to a nonsymmetric linear elliptic partial differential equation (PDE). The recent work (Bringmann, Feischl, Miraçi, Praetorius, Streitberger:2024) showed that the key to cost-optimality is full R-linear convergence of an appropriate quasi-error quantity together with optimal convergence rates with respect to the number of degrees of freedom. Therein, the contraction of an iterative solver in the PDE-related norm is a crucial ingredient in the analysis. While a natural candidate for nonsymmetric PDEs is a preconditioned generalized minimal residual (GMRES) method, it only leads to the contraction of the residual in a discrete vector norm, and the connection to the PDE-related norm is not clear. Therefore, we follow the approach of (Bringmann, Feischl, Miraçi, Praetorius, Streitberger:2024) and consider a nested iterative solver, where the outer solver is a symmetrization method (the so-called Zarantonello iteration) and the inner solver is an optimal geometric multigrid method (Innerberger, Miraçi, Praetorius, Streitberger: 2024) for the symmetrized problem. Following this approach, we show that an embedding of nested iterative solvers into the standard GOAFEM loop SOLVE & ESTIMATE — MARK — REFINE guarantees full R-linear convergence of an appropriate quasi-error product so that convergence rates with respect to the number of degrees of freedom and with respect to the total runtime coincide. Finally, we prove optimal complexity of the proposed algorithm for sufficiently small adaptivity parameters. Numerical experiments investigate the performance of the algorithm and indicate that larger stopping parameters are feasible and even favorable in practice.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
cost-optimality
en
dc.subject
goal-oriented adaptive FEM
en
dc.subject
iterative solver
en
dc.subject
optimal convergence rates
en
dc.title
Cost-optimal goal-oriented adaptive FEM with nested iterative solvers
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
72
-
dc.description.endpage
72
-
dc.relation.grantno
P 33216-N
-
dc.relation.grantno
F 6509-N36
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10)
-
tuw.publication.invited
invited
-
tuw.project.title
Computational nonlinear PDEs
-
tuw.project.title
Analytische und numerische Koppelung im Mikromagnetismus
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-4546-5165
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.event.name
10th International Conference on Computational Methods in Applied Mathematics (CMAM-10 2024)
en
tuw.event.startdate
10-06-2024
-
tuw.event.enddate
14-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bonn
-
tuw.event.country
DE
-
tuw.event.presenter
Streitberger, Julian
-
tuw.event.track
Single Track
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 33216-N
-
crisitem.project.grantno
F 6509-N36
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing