<div class="csl-bib-body">
<div class="csl-entry">Freiszlinger, A., & Praetorius, D. (2024). Convergence of adaptive multilevel stochastic Galerkin FEM for parametric PDEs. In <i>Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10)</i> (pp. 82–82).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199447
-
dc.description.abstract
In this talk, we propose and analyze an adaptive multilevel stochastic Galerkin finite element method for a second-order elliptic diffusion problem with random coefficients. The problem is discretized by means of finite generalized polynomial chaos (gpc) expansions in the parameter domain, and standard FEM-discretizations in the spatial domain. Following [1], the adaptive
algorithm is driven by a residual-based error estimator, which incorporates both the error due to FEM-discretization and the error due to truncated gpc expansions. Under a local compatibility condition on the mesh sizes of the triangulations associated to an active parameter in the full parameter set, we prove that the proposed algorithm guarantees R-linear convergence of the
estimator. To this end, we adopt the approach of [2], and show contraction of a suitable quasi-error quantity. We propose a novel multilevel-refinement algorithm, which simultaneously refines every grid while additionally preserving a local compatibility condition between the meshes in the hierarchy and assigns suitable triangulations to newly activated parameters. Numerical
experiments illustrate the theoretical results.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
stochastic Galerkin FEM
en
dc.subject
parametric PDEs
en
dc.subject
Multilevel methods
en
dc.subject
A posteriori error estimation
en
dc.title
Convergence of adaptive multilevel stochastic Galerkin FEM for parametric PDEs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
82
-
dc.description.endpage
82
-
dc.relation.grantno
P 33216-N
-
dc.relation.grantno
F 6509-N36
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10)
-
tuw.project.title
Computational nonlinear PDEs
-
tuw.project.title
Analytische und numerische Koppelung im Mikromagnetismus
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.event.name
10th International Conference on Computational Methods in Applied Mathematics (CMAM-10 2024)
en
tuw.event.startdate
10-06-2024
-
tuw.event.enddate
14-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bonn
-
tuw.event.country
DE
-
tuw.event.presenter
Freiszlinger, Alexander
-
tuw.event.track
Single Track
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 33216-N
-
crisitem.project.grantno
F 6509-N36
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing