<div class="csl-bib-body">
<div class="csl-entry">Graziani, C., Drucks, T., Jogl, F., Bianchini, M., Scarselli, F., & Gärtner, T. (2024). The Expressive Power of Path-Based Graph Neural Networks. In Z. K. Ruslan Salakhutdinov Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp (Ed.), <i>Proceedings of the 41st International Conference on Machine Learning</i>. PMLR. http://hdl.handle.net/20.500.12708/199519</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199519
-
dc.description.abstract
We systematically investigate the expressive power of path-based graph neural networks. While it has been shown that path-based graph neural networks can achieve strong empirical results, an investigation into their expressive power is lacking. Therefore, we propose PATH-WL, a general class of color refinement algorithms based on paths and shortest path distance information. We show that PATH-WL is incomparable to a wide range of expressive graph neural networks, can count cycles, and achieves strong empirical results on the notoriously difficult family of strongly regular graphs. Our theoretical results indicate that PATH-WL forms a new hierarchy of highly expressive graph neural networks.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
GNNs
en
dc.subject
graph neural networks
en
dc.subject
WL
en
dc.subject
Weisfeiler-Leman
en
dc.subject
Expressivity
en
dc.subject
Graph theory
en
dc.title
The Expressive Power of Path-Based Graph Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.relation.grantno
ICT22-059
-
dc.rights.holder
Copyright 2024 by the author(s)
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 41st International Conference on Machine Learning
-
tuw.container.volume
235
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Proceedings of Machine Learning Research
-
tuw.relation.publisher
PMLR
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17382289
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-7606-9405
-
tuw.author.orcid
0000-0002-4144-7250
-
tuw.author.orcid
0000-0001-5985-9213
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
International Conference on Machine Learning (2024)
en
dc.description.sponsorshipexternal
MEDICA
-
dc.description.sponsorshipexternal
European Union
-
dc.relation.grantnoexternal
2022RNTYWZ
-
dc.relation.grantnoexternal
ECS00000017
-
tuw.event.startdate
21-07-2024
-
tuw.event.enddate
27-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vienna
-
tuw.event.country
AT
-
tuw.event.presenter
Graziani, Caterina
-
tuw.event.presenter
Drucks, Tamara
-
tuw.event.presenter
Jogl, Fabian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
dc.contributor.editorgroup
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-7606-9405
-
crisitem.author.orcid
0000-0002-4144-7250
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds