<div class="csl-bib-body">
<div class="csl-entry">Ludwig, M., & Li, J. (2024, July 15). <i>Valuations on Convex Functions</i> [Conference Presentation]. 9th European Congress of Mathematics, Sevilla, Spain. http://hdl.handle.net/20.500.12708/199538</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199538
-
dc.description.abstract
Let \(\operatorname{Conv}(\mathbb R^n)\) be the space of proper, lower semicontinuous, convex functions \(v\colon \mathbb R^n\to (-\infty,\infty]\) and \(\mathbb A\) an Abelian semi-group. A functional \(\operatorname{Z}\colon \operatorname{Conv}(\mathbb R^n)\to \mathbb A \) is called a {\em valuation} if
\[
\operatorname{ Z}(f\vee g)+\operatorname{Z}(f\wedge g)=\operatorname{Z}(f) +\operatorname{Z} (g)
\]
for all \(f,g\in \operatorname{Conv}(\mathbb R^n)\) such that the pointwise maximum \(f\vee g\) and the pointwise minimum \(f\wedge g\) are in \( \operatorname{Conv}(\mathbb R^n)\). We present classification results of real and measure-valued valuations on convex functions on \(\mathbb R^n\).
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
valuation
en
dc.subject
convex body
en
dc.subject
convex function
en
dc.subject
Monge-Ampère measure
en
dc.title
Valuations on Convex Functions
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Shanghai Chengtou (China), China
-
dc.relation.grantno
P 34446-N
-
dc.type.category
Conference Presentation
-
tuw.publication.invited
invited
-
tuw.project.title
Bewertungen auf konvexen Funktionen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.author.orcid
0000-0002-7389-6720
-
tuw.author.orcid
0000-0001-5897-3364
-
tuw.event.name
9th European Congress of Mathematics
en
tuw.event.startdate
15-07-2024
-
tuw.event.enddate
19-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Sevilla
-
tuw.event.country
ES
-
tuw.event.institution
European Mathematical Society
-
tuw.event.presenter
Ludwig, Monika
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
conference paper not in proceedings
-
item.cerifentitytype
Publications
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 34446-N
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0002-7389-6720
-
crisitem.author.orcid
0000-0001-5897-3364
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie