<div class="csl-bib-body">
<div class="csl-entry">Goldenits, G., Mallinger, K., Neubauer, T., & Weippl, E. (2024). Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance. In <i>EGU General Assembly 2024</i>. EGU General Assembly 2024, Wien, Austria. EGU. https://doi.org/10.5194/egusphere-egu24-9018</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199691
-
dc.description.abstract
Digital Twins are becoming an increasingly researched area in agriculture due to the pressure on food security caused by growing population numbers and climate change. They provide a necessary push towards more efficient and sustainable agricultural methods to secure and increase crop yields.
Digital Twins often use Machine Learning, and more recently, deep learning methods in their architecture to process data and predict future outcomes based on input data. However, concerns about the trustworthiness of the output from deep learning models persist due to the lack of clarity regarding the reasoning behind their outputs.
In our work, we have developed crop rotation policies using explainable tabular reinforcement learning techniques. We have compared these policies to those generated by a deep Q-learning approach, using both five-step and seven-step rotations. The aim of the rotations is to maximise crop yields while maintaining a healthy nitrogen level in the soil and adhering to established planting rules. Crop yields may vary due to external factors such as weather patterns, so perturbations were added to the reward signal to account for these influences. The deployed explainable tabular reinforcement learning methods perform similarly to the deep Q-learning approach in terms of collected reward when the rewards are not perturbed. However, in the perturbed reward setting, robust tabular reinforcement learning methods outperform the deep learning approach while maintaining interpretable policies. By consulting with farmers and crop rotation experts, we demonstrate that the derived policies are reasonable and that the use of interpretable reinforcement learning has increased confidence in the resulting policies, thereby increasing the likelihood that farmers will adopt the suggested policies.
en
dc.language.iso
en
-
dc.subject
Reinforcement learning
en
dc.subject
Fruchtfolgeplanung
de
dc.subject
Crop rotation planning
en
dc.subject
Digital Agriculture
en
dc.subject
Digitale Landwirtschaft
de
dc.title
Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Vienna, Austria
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
EGU General Assembly 2024
-
tuw.relation.publisher
EGU
-
tuw.book.chapter
EGU24-9018
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-19 - Fachbereich Precision Livestock Farming
-
tuw.publisher.doi
10.5194/egusphere-egu24-9018
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-9814-6045
-
tuw.event.name
EGU General Assembly 2024
en
tuw.event.startdate
14-04-2024
-
tuw.event.enddate
19-04-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Goldenits, Georg
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.orcid
0000-0002-9814-6045
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering