<div class="csl-bib-body">
<div class="csl-entry">Georgiadis, S., Jüngel, A., & Tzavaras, A. E. (2024). Non-isothermal Multicomponent Flows with Mass Diffusion and Heat Conduction. In <i>Hyperbolic Problems: Theory, Numerics, Applications. Volume I</i> (pp. 263–273). https://doi.org/10.1007/978-3-031-55260-1_19</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/199881
-
dc.description.abstract
A type-I model of non-isothermal multicomponent systems of gases describing mass diffusive and heat conductive phenomena is presented. The derivation of the model and a convergence result among thermomechanical theories in the smooth regime are discussed. Furthermore, the global-in-time existence of weak solutions and the weak-strong uniqueness property are established for the corresponding system with zero barycentric velocity.
en
dc.language.iso
en
-
dc.relation.ispartofseries
SEMA SIMAI Springer Series
-
dc.subject
Maxwell-Stefan diffusion
en
dc.subject
Multicomponent systems
en
dc.subject
Nonisothermal model
en
dc.subject
heat conduction
en
dc.subject
Multicomponent flow modeling
en
dc.title
Non-isothermal Multicomponent Flows with Mass Diffusion and Heat Conduction
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
King Abdullah University of Science and Technology, Saudi Arabia
-
dc.relation.isbn
978-3-031-55260-1
-
dc.description.startpage
263
-
dc.description.endpage
273
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Hyperbolic Problems: Theory, Numerics, Applications. Volume I