<div class="csl-bib-body">
<div class="csl-entry">Kovacs, A. S., Hermosilla Casajus, P., & Raidou, R. G. (2024). Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs. <i>Computer Graphics Forum</i>, <i>43</i>(2), Article e15016. https://doi.org/10.1111/cgf.15016</div>
</div>
-
dc.identifier.issn
0167-7055
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200040
-
dc.description.abstract
Mesh texture synthesis is a key component in the automatic generation of 3D content. Existing learning-based methods have drawbacks—either by disregarding the shape manifold during texture generation or by requiring a large number of different views to mitigate occlusion-related inconsistencies. In this paper, we present a novel surface-aware approach for mesh texture synthesis that overcomes these drawbacks by leveraging the pre-trained weights of 2D Convolutional Neural Networks (CNNs) with the same architecture, but with convolutions designed for 3D meshes. Our proposed network keeps track of the oriented patches surrounding each texel, enabling seamless texture synthesis and retaining local similarity to classical 2D convolutions with square kernels. Our approach allows us to synthesize textures that account for the geometric content of mesh surfaces, eliminating discontinuities and achieving comparable quality to 2D image synthesis algorithms. We compare our approach with state-of-the-art methods where, through qualitative and quantitative evaluations, we demonstrate that our approach is more effective for a variety of meshes and styles, while also producing visually appealing and consistent textures on meshes.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Computer Graphics Forum
-
dc.subject
Deep learning (DL)
en
dc.subject
Computer Graphics
en
dc.subject
Texture Synthesis
en
dc.title
Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs
en
dc.type
Article
en
dc.type
Artikel
de
dc.type.category
Original Research Article
-
tuw.container.volume
43
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computer Graphics Forum
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1111/cgf.15016
-
dc.identifier.articleid
e15016
-
dc.identifier.eissn
1467-8659
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-0849-9032
-
tuw.author.orcid
0000-0003-2468-0664
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0000-0002-0849-9032
-
crisitem.author.orcid
0000-0003-2468-0664
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology