<div class="csl-bib-body">
<div class="csl-entry">Besic, H., Deutschmann-Olek, A., Mešić, K., Kanellopulos, K., & Schmid, S. (2024). Optimized Signal Estimation in Nanomechanical Photothermal Sensing via Thermal Response Modelling and Kalman Filtering. <i>IEEE Sensors Journal</i>. https://doi.org/10.1109/JSEN.2024.3446369</div>
</div>
-
dc.identifier.issn
1530-437X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200284
-
dc.description.abstract
We present an advanced thermal response model for micro- and nanomechanical systems in photothermal sensing, designed to balance speed and precision. Our model considers the two time constants of the nanomechanical element and the supporting chip, triggered by photothermal heating, enabling precise photothermal input signal estimation through Kalman filtering. By integrating heat transfer and noise models, we apply an adaptive Kalman filter optimized for FPGA systems in real-time or offline. This method, used for photothermal infrared (IR) spectroscopy with nanomechanical resonators and a quantum cascade laser (QCL) in step-scan mode, enhances response speed beyond standard low-pass filters, enabling faster data acquisition and reducing the effects of drift and random walk. Measurements show the significant impact of the thermal expansion coefficients' ratio on the frequency response. The adaptive Kalman filter, informed by the QCL's input characteristics, accelerates the system's response, allowing rapid and precise IR spectrum generation. The use of the Levenberg-Marquardt algorithm and PSD analysis for system identification further refines our approach, promising fast and accurate nanomechanical photothermal sensing.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Sensors Journal
-
dc.subject
NEMS
en
dc.subject
Self-Sustaining Oscillator
en
dc.subject
Frequency counter
en
dc.subject
IR Spectroscopy
en
dc.subject
Kalman filter
en
dc.title
Optimized Signal Estimation in Nanomechanical Photothermal Sensing via Thermal Response Modelling and Kalman Filtering
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.url
https://doi.org/10.1109/JSEN.2024.3446369
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Sensors Journal
-
tuw.publication.orgunit
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
tuw.publisher.doi
10.1109/JSEN.2024.3446369
-
dc.date.onlinefirst
2024-08-29
-
dc.identifier.eissn
1558-1748
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-5057-705X
-
tuw.author.orcid
0000-0001-7602-9211
-
tuw.author.orcid
0000-0003-3778-7137
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik