<div class="csl-bib-body">
<div class="csl-entry">Agüero Trejo, J. M., Calude, C. S., Dinneen, M., Fedorov, A., Kulikov, A., Navarathna, R., & Svozil, K. (2024). How real is incomputability in physics? <i>Theoretical Computer Science</i>, <i>1003</i>, Article 114632. https://doi.org/10.1016/j.tcs.2024.114632</div>
</div>
-
dc.identifier.issn
0304-3975
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200324
-
dc.description.abstract
A physical system is determined by a finite set of initial conditions and “laws” represented by equations. The system is computable if we can solve the equations in all instances using a “finite body of mathematical knowledge”. In this case, if the laws of the system can be coded into a computer program, then given the initial conditions of the system, one can compute the system's evolution. Are there incomputable physical systems? This question has been theoretically studied in the last 30–40 years. In this paper, we experimentally show for the first time the strong incomputability of a quantum experiment, namely the outputs of a quantum random number generator. Moreover, the experimental results are robust and statistically significant.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Theoretical Computer Science
-
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
-
dc.subject
3D-QRNG physical implementation
en
dc.subject
Incomputability
en
dc.subject
Localised Kochen-Specker Theorem
en
dc.subject
Testing incomputability
en
dc.title
How real is incomputability in physics?
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell 4.0 International
de
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International