<div class="csl-bib-body">
<div class="csl-entry">Fus, D. R. (2024). <i>Magnetic correlation length at quantum criticality : the role of fermi surface geometries</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.120471</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.120471
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200469
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Strongly correlated electron systems exhibit some of the most fascinating phenomena of condensed matter physics. Beyond the famous example of the Mott-Hubbard metal-to-insulator transition and the occurrence of classical phase transitions to magnetic and charge ordered states as well as superconductivity, several quantum phase transitions can be found in the phase diagrams of strongly correlated systems. These transitions are quite intriguing, because they occur at zero temperature, where quantum fluctuations dominate the physics in contrast to their classical, thermal counterparts. The study of quantum phase transitions does not represent, in any case, a mere academic exercise, as their occurrence affect broad finite-temperature sectors of the phase diagrams of correlated materials. Their theoretical description for correlated electron systems faces big challenges, both analytical and numerical, so that a comprehensive theory could not be established hitherto. This master thesis aims at improving our fundamental theoretical understanding of quantum phase transitions in correlated bulk metals by performing thorough numerical and analytical investigations. In particular, for the former we resort to the dynamical mean-field theory(DMFT), which includes purely local temporal correlations, while analytical derivations will mostly exploit the random phase approximation (RPA). These quantum many-body methods are applied to one of the most fundamental model systems in condensed matter physics, the Hubbard model on three dimensional lattices. By means of DMFT and RPA, the magnetic susceptibility and the corresponding correlation length in all the relevant regimes around a magnetic quantum critical point in the Hubbard model are determined, clarifying the previously not understood behavior of the latter quantity. This provides further evidence for a significant violation of the predictions of the conventional Hertz-Millis-Moriya theory, triggered by specific geometrical properties of the underlying Fermi surfaces, and for their effects on the whole phase-diagram around the corresponding magnetic quantum critical points.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Quantenfeldtheorie für elektronische Vielteilchensysteme
de
dc.subject
Quantenkritikalität
de
dc.subject
Magnetische Phasenübergänge
de
dc.subject
Quantum field theory for many-electron systems
en
dc.subject
Quantum criticality
en
dc.subject
Magnetic phase-transitions
en
dc.title
Magnetic correlation length at quantum criticality : the role of fermi surface geometries
en
dc.title.alternative
Magnetische Korrelationslänge bei Quantenkritikalität: die Rolle der Fermiflächengeometrien
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.120471
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Dominik Robert Fus
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E138 - Institut für Festkörperphysik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17299016
-
dc.description.numberOfPages
56
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-5669-3377
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E138-02 - Forschungsbereich Correlations: Theory and Experiments