<div class="csl-bib-body">
<div class="csl-entry">Zeni, W. (2024). <i>Iron(II) spin crossover complexes : a multifaceted approach to rational design, tailor cooperativity, enhance complexity and advanced multifunctionality</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.69801</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.69801
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200645
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description
Kumulative Dissertation aus drei Artikeln
-
dc.description.abstract
Molecular bistability is a key-ingredient for the development of novel molecular materials tailored for technological applicability. One of the most illustrious examples of bistability in coordination chemistry is the spin-crossover (SCO) effect, featuring for 3d4-3d7 metal ions a reversible transition between different electronic states triggered by external stimuli as temperature, pressure, light, etc. The change of the metal centre’s spin-state affects key-properties of the material including magnetic moment, colour, dielectric constant, lattice extension. These attributes make SCO compounds highly desirable for applications in sensors, data storage, and smart materials. Of the utmost importance for any possible application is an abrupt and preferably hysteretic spin transition at or above room temperature, for which a high degree of cooperativity between molecules is required.Modern SCO research focuses mainly on two aspects: the first is a deeper understanding of the SCO phenomenon through rational design of SCO materials to achieve precise control over the SCO phenomenon and exploit the underlying magnetic behavior, but in the last three decades a new trend emerged, namely the synthesis of multifunctional SCO materials bearing an additional property which synergistically depends on the spin transition. In this work, both abovementioned aspects were tackled.In the context of rational design, a decoupling of electronic and steric effects was attempted, by preparing [Fe(PrIm)6]2+ (PrIm = 1-propyl-1H-imidazole) and comparing it with [Fe(3tz)6]2+ (3tz=1-propyl-1H-tetrazole), one of the first and probably the most studied and comprehensively characterized SCO-compound. The study also shed light on the versatility of PrIm as ligand for Fe(II) complexes. Multifunctionality was first approached by synthesizing and characterizing a series of ω-(1H-tetrazol-1-yl) carboxylic acids bifunctional ligands and their Fe(II) complexes aiming to obtain systems showing a strong, extended H-bond network for enhanced cooperativity, ergo improve the quality of the spin transition. In a second step, the bidentate nature of the ligands was exploited for the synthesis of mixed-metallic 3d-4f coordination polymers.Lastly, the coupling of SCO with host-guest chemistry for chemo-sensing application was investigated, by taking a new approach to produce extended Hofmann-type SCO-PCPs. Applying a novel synthetic procedure, an enlargement of the classic structure [Fe(pz)][M(CN)4] (M=Ni, Pd, Pt) based on cyanometallate linkers was performed, using tetrakis-cyanoacetylides linkers to obtain PCPs having the general formula [Fe(pz)][M(C3N)4]. They feature five-fold larger cavities and a drastic increase of the porosity. Most importantly, all the desired properties (hysteretic SCO, guest-dependent spin transition, bidirectional chemoswitching and memory effect) were retained.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Eisen(II)
de
dc.subject
Spin Crossover
de
dc.subject
tripodale Liganden
de
dc.subject
asymetrische Brückenliganden
de
dc.subject
Hoffmann-Typ Netzwerke
de
dc.subject
Multifunktionalität
de
dc.subject
iron(II)
en
dc.subject
spin crossover
en
dc.subject
tripodal ligands
en
dc.subject
asymetric bridging ligands
en
dc.subject
Hoffmann-type networks
en
dc.subject
multifunctionality
en
dc.title
Iron(II) spin crossover complexes : a multifaceted approach to rational design, tailor cooperativity, enhance complexity and advanced multifunctionality
en
dc.title.alternative
Eisen(II) Spin Crossover-Komplexe : ein vielseitiger Zugang zu rationalem Design, massgeschneiderter Kooperativität und fortgeschrittener Multifunktionalität
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.69801
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Willi Zeni
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E163 - Institut für Angewandte Synthesechemie
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17306623
-
dc.description.numberOfPages
101
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-4172-6193
-
item.openairetype
doctoral thesis
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E163-01-3 - Forschungsgruppe Magneto- und Thermochemie