<div class="csl-bib-body">
<div class="csl-entry">Fellner, D., Strasser, T., & Kastner, W. (2024). Chapter Twelve - Misconfiguration detection of inverter-based units in power distribution grids using machine learning. In R. Arghandeh & Y. Zhou (Eds.), <i>Big Data Application in Power Systems</i> (pp. 269–292). Elsevier Science. https://doi.org/10.1016/B978-0-443-21524-7.00009-8</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200886
-
dc.description.abstract
Nowadays, electric power distribution grids increasingly incorporate distributed renewable generation with volatile power infeed along with new electrified loads such as heating systems or electric vehicles. These devices can introduce problems of grid overloading or voltage band violations. To cope with such problems, those units are usually equipped with grid-supporting control services. However, power system operators and energy utilities have no way of ensuring that these functions work as intended, usually due to a lack of sensory capacities in the field. Hence, additional monitoring capabilities are necessary. Therefore, this chapter introduces a framework for the misconfiguration detection of grid assets, especially inverter-based units, by handling operational grid data. Also, a linked monitoring application that uses data from the substation transformer and device levels for data mining and misconfiguration detection is introduced. The detection methods are merged with a disaggregation method to form an integrated diagnosis framework. The functionality of this integrated application is demonstrated on a selected grid-integrated photovoltaic system use case.
en
dc.language.iso
en
-
dc.subject
Power distribution
en
dc.subject
Low-voltage grids
en
dc.subject
Medium-voltage grids
en
dc.subject
Operational data
en
dc.subject
Data-driven monitoring
en
dc.subject
Device malfunctions
en
dc.subject
Detection
en
dc.subject
Transformer profile disaggregation
en
dc.subject
Machine learning
en
dc.title
Chapter Twelve - Misconfiguration detection of inverter-based units in power distribution grids using machine learning
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
University of Applied Sciences Technikum Wien, Austria
-
dc.contributor.editoraffiliation
Western Norway University of Applied Sciences, Norway
-
dc.contributor.editoraffiliation
University of California, Berkeley, United States of America (the)
-
dc.relation.isbn
9780443215247
-
dc.relation.doi
10.1016/C2022-0-03217-7
-
dc.description.startpage
269
-
dc.description.endpage
292
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Big Data Application in Power Systems
-
tuw.relation.publisher
Elsevier Science
-
tuw.relation.publisherplace
Amsterdam
-
tuw.book.chapter
12
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E325 - Institut für Mechanik und Mechatronik
-
tuw.publication.orgunit
E191-03 - Forschungsbereich Automation Systems
-
tuw.publication.orgunit
E056-16 - Fachbereich SafeSeclab
-
tuw.publisher.doi
10.1016/B978-0-443-21524-7.00009-8
-
dc.description.numberOfPages
24
-
tuw.author.orcid
0000-0002-6733-7682
-
tuw.author.orcid
0000-0002-6415-766X
-
tuw.author.orcid
0000-0001-5420-404X
-
tuw.editor.orcid
0000-0002-0691-5426
-
tuw.editor.orcid
0000-0003-0618-232X
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
30
-
item.openairetype
book part
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Applied Sciences Technikum Wien
-
crisitem.author.dept
E325 - Institut für Mechanik und Mechatronik
-
crisitem.author.dept
E640 - Vizerektorat Digitalisierung und Infrastruktur
-
crisitem.author.orcid
0000-0002-6733-7682
-
crisitem.author.orcid
0000-0002-6415-766X
-
crisitem.author.orcid
0000-0001-5420-404X
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften