<div class="csl-bib-body">
<div class="csl-entry">Aayesha, A., Afzaal, M., & Neidhardt, J. (2024). User Experience of Recommender System: A User Study of Social-aware Fashion Recommendations System. In <i>Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization</i> (pp. 356–361). https://doi.org/10.1145/3631700.3664896</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200904
-
dc.description.abstract
User experience, which encompasses users' feelings and perceptions, is regarded as a key element in the evaluation of recommender systems. The existing literature extensively works on recommendation generation strategies with focus on the accuracy by considering objective aspects of the system. Although some of the current works considered subjective aspects of the recommendation systems from a user-centric perspective to evaluate the recommender system, however, a comprehensive analysis that could investigate factors to improve user experience was of limited focus. In this paper, we propose a methodology that provides a comprehensive multi-perspective analysis of a social-aware fashion recommender system and analyses the impact of user's personal attributes and profiles on their experiences in various aspects of system use. A user study was conducted to realize the proposed methodology. The obtained insights highlighted that user experiences vary not only from the perspective of using a recommender system but also by varying their personal attributes (age, gender, hobby) and profiles.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
Social-aware recommendations
en
dc.subject
User attributes impact
en
dc.subject
User Experience of recommender system
en
dc.title
User Experience of Recommender System: A User Study of Social-aware Fashion Recommendations System
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9798400704666
-
dc.relation.doi
10.1145/3631700
-
dc.description.startpage
356
-
dc.description.endpage
361
-
dc.relation.grantno
CDL Neidhardt
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization
-
tuw.peerreviewed
true
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1145/3631700.3664896
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-6730-4605
-
tuw.author.orcid
0000-0003-2054-0971
-
tuw.author.orcid
0000-0001-7184-1841
-
tuw.event.name
UMAP Adjunct '24: Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization
en
tuw.event.startdate
01-07-2024
-
tuw.event.enddate
04-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Cagliari
-
tuw.event.country
IT
-
tuw.event.presenter
Aayesha, Aayesha
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
Stockholm University
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-2054-0971
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering