<div class="csl-bib-body">
<div class="csl-entry">Unterrainer, R., Gambino, D., Semper, F., Bodenseher, A., Torsello, D., Laviano, F., Fischer, D. X., & Eisterer, M. (2024). Responsibility of small defects for the low radiation tolerance of coated conductors. <i>SUPERCONDUCTOR SCIENCE & TECHNOLOGY</i>, <i>37</i>(10), Article 105008. https://doi.org/10.1088/1361-6668/ad70db</div>
</div>
-
dc.identifier.issn
0953-2048
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/200989
-
dc.description.abstract
Rare-earth-barium-copper-oxide based coated conductors exhibit a relatively low radiation robustness compared to e.g. Nb3Sn due to the d-wave symmetry of the order parameter, rendering impurity scattering pair breaking. The type and size of the introduced defects influence the degrading effects on the superconducting properties; thus the disorder cannot be quantified by the number of displaced atoms alone. In order to develop degradation mitigation strategies for radiation intense environments, it is relevant to distinguish between detrimental and beneficial defect structures. Gadolinium-barium-copper-oxide based samples irradiated with the full TRIGA Mark II fission reactor spectrum accumulate a high density of point-like defects and small clusters due to n - γ capture reactions of gadolinium. This leads to a 14–15 times stronger degradation of the critical temperature compared to samples shielded from slow neutrons. At the same time both irradiation techniques lead to the same degradation behavior of the critical current density as function of the transition temperature . Furthermore, annealing the degraded samples displayed the same recovery rates, indicating the universality of the defects responsible for the degradation. Since the primary knock on atom of the n - γ reaction as well as the recoil energy is known, we used molecular dynamics simulations to calculate which defects are formed in the neutron capture process and density functional theory to assess their influence on the local density of states. The defects found in the simulation were mainly single defects as well as clusters consisting of Oxygen Frenkel pairs, however, more complex defects such as Gd antisites occurred as well.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
IOP PUBLISHING LTD
-
dc.relation.ispartof
SUPERCONDUCTOR SCIENCE & TECHNOLOGY
-
dc.subject
high temperature superconductors
en
dc.subject
neutron irradiation
en
dc.subject
pair breaking
en
dc.subject
scattering
en
dc.subject
radiation tolerance
en
dc.subject
coated conductors
en
dc.subject
REBCO
en
dc.subject
magnets
en
dc.title
Responsibility of small defects for the low radiation tolerance of coated conductors
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Polytechnic University of Turin, Italy
-
dc.contributor.affiliation
Polytechnic University of Turin, Italy
-
dc.contributor.affiliation
Cambridge College, United States of America (the)
-
dc.relation.grantno
101052200
-
dc.type.category
Original Research Article
-
tuw.container.volume
37
-
tuw.container.issue
10
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
High-temperature superconducting materials for fusion magnets. The partner project is KKKÖ ME
-
tuw.researchinfrastructure
TRIGA Mark II-Nuklearreaktor
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
SUPERCONDUCTOR SCIENCE & TECHNOLOGY
-
tuw.publication.orgunit
E141-06 - Forschungsbereich Low Temperature Physics and Superconductivity
-
tuw.publisher.doi
10.1088/1361-6668/ad70db
-
dc.identifier.articleid
105008
-
dc.identifier.eissn
1361-6668
-
dc.description.numberOfPages
20
-
tuw.author.orcid
0000-0002-8720-9004
-
tuw.author.orcid
0000-0002-7763-7224
-
tuw.author.orcid
0009-0003-6212-0657
-
tuw.author.orcid
0000-0002-2959-1962
-
tuw.author.orcid
0000-0001-9551-1716
-
tuw.author.orcid
0000-0002-5271-6575
-
tuw.author.orcid
0000-0003-2916-8555
-
tuw.author.orcid
0000-0002-7160-7331
-
dc.description.sponsorshipexternal
Swedish Research Council
-
dc.description.sponsorshipexternal
National Academic Infrastructure for Supercomputing in Sweden
-
dc.description.sponsorshipexternal
Swedish Research Council
-
dc.description.sponsorshipexternal
European Cooperation in Science and Technology
-
dc.description.sponsorshipexternal
FSE REACT-EU—PON Ricerca e Innovazione 2014-2020
-
dc.description.sponsorshipexternal
Italian Ministry of Foreign Affairs and International Cooperation
-
dc.relation.grantnoexternal
2023-00208
-
dc.relation.grantnoexternal
2022-06725
-
dc.relation.grantnoexternal
CA19108
-
dc.relation.grantnoexternal
US23GR16
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
0000000000
-
crisitem.author.dept
E141-06 - Forschungsbereich Low Temperature Physics and Superconductivity
-
crisitem.author.dept
Link�ping University
-
crisitem.author.dept
E141-06 - Forschungsbereich Low Temperature Physics and Superconductivity
-
crisitem.author.dept
E141-06 - Forschungsbereich Low Temperature Physics and Superconductivity
-
crisitem.author.dept
Polytechnic University of Turin
-
crisitem.author.dept
Polytechnic University of Turin
-
crisitem.author.dept
Cambridge College
-
crisitem.author.dept
E141-06 - Forschungsbereich Low Temperature Physics and Superconductivity