<div class="csl-bib-body">
<div class="csl-entry">Wang, G. (2018). <i>Neural computation methods for industrial data processing</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2018.62942</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2018.62942
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/2010
-
dc.description.abstract
Modern manufacturing systems produce sensory data every day and methods for efficiently uncovering useful information (quickly, accurately, and with little or no human effort) within this raw data are crucial. A very promising solution in this respect is end-to-end data processing. It allows capturing complex tasks through a single complete model. Recent progress within the deep-learning community has shed light on the implementation of end-to-end data-processing techniques in manufacturing. These techniques take advantage of the learning ability of Artificial Neural Networks (ANNs) to extract essential system features from the inputs. Based on this information, a simple model is constructed to complete modeling. This thesis focuses on neural-computing-based approaches to processing industrial sensory data. Predictive machine maintenance, work-in-progress on product-quality prediction, and fast data modeling are selected to show how neural computing can be used to uncover useful information from industrial sensory data. In this thesis, neural computing refers to ANNs-based methods for solving specific problem-modeling tasks.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Deep Neural Networks
en
dc.subject
Echo-state Networks
en
dc.subject
Heuristic Random Searching
en
dc.subject
Industrial Data Processing
en
dc.title
Neural computation methods for industrial data processing
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2018.62942
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Guodong Wang
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Bartocci, Ezio
-
tuw.publication.orgunit
E191 - Institut für Computer Engineering
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC15285541
-
dc.description.numberOfPages
176
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-120963
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0003-0251-6257
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-5715-2142
-
tuw.assistant.orcid
0000-0002-8004-6601
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems