<div class="csl-bib-body">
<div class="csl-entry">Eiter, T., Geibinger, T., Higuera Ruiz, N. N., Musliu, N., Oetsch, J., Pfliegler, D., & Stepanova, D. (2024). Adaptive large-neighbourhood search for optimisation in answer-set programming. <i>Artificial Intelligence</i>, <i>337</i>, Article 104230. https://doi.org/10.1016/j.artint.2024.104230</div>
</div>
-
dc.identifier.issn
0004-3702
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/201224
-
dc.description.abstract
Answer-set programming (ASP) is a prominent approach to declarative problem solving that is increasingly used to tackle challenging optimisation problems. We present an approach to leverage ASP optimisation by using large-neighbourhood search (LNS), which is a meta-heuristic where parts of a solution are iteratively destroyed and reconstructed in an attempt to improve an overall objective. In our LNS framework, neighbourhoods can be specified either declaratively as part of the ASP encoding or automatically generated by code. Furthermore, our framework is self-adaptive, i.e., it also incorporates portfolios for the LNS operators along with selection strategies to adjust search parameters on the fly. The implementation of our framework, the system ALASPO, currently supports the ASP solver clingo, as well as its extensions clingo-dl and clingcon that allow for difference and full integer constraints, respectively. It utilises multi-shot solving to efficiently realise the LNS loop and in this way avoids program regrounding. We describe our LNS framework for ASP as well as its implementation, discuss methodological aspects, and demonstrate the effectiveness of the adaptive LNS approach for ASP on different optimisation benchmarks, some of which are notoriously difficult, as well as real-world applications for shift planning, configuration of railway-safety systems, parallel machine scheduling, and test laboratory scheduling.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Artificial Intelligence
-
dc.subject
Answer set programming (ASP)
en
dc.subject
Optimization
en
dc.subject
Large-Neighbourhood Search
en
dc.title
Adaptive large-neighbourhood search for optimisation in answer-set programming
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Jönköping University, Sweden
-
dc.contributor.affiliation
Bosch Center for AI, Germany
-
dc.type.category
Original Research Article
-
tuw.container.volume
337
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://doi.org/10.5281/zenodo.11058964
-
dcterms.isPartOf.title
Artificial Intelligence
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1016/j.artint.2024.104230
-
dc.date.onlinefirst
2024-09-23
-
dc.identifier.articleid
104230
-
dc.identifier.eissn
1872-7921
-
dc.description.numberOfPages
35
-
tuw.author.orcid
0000-0001-6003-6345
-
tuw.author.orcid
0000-0002-0856-7162
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.author.orcid
0000-0002-9902-7662
-
tuw.author.orcid
0009-0005-5378-5993
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems