<div class="csl-bib-body">
<div class="csl-entry">Bhore, S., Nöllenburg, M., Tóth, C. D., & Wulms, J. (2024). Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time. In <i>40th International Symposium on Computational Geometry (SoCG 2024)</i>. 40th International Symposium on Computational Geometry (SoCG 2024), Athens, Greece. https://doi.org/10.4230/LIPIcs.SoCG.2024.19</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/201364
-
dc.description.abstract
A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1 + ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a “replacement” disk (if any) when a disk in one of our independent sets is deleted.
en
dc.language.iso
en
-
dc.subject
Dynamic algorithm
en
dc.subject
Geometric intersection graph
en
dc.subject
Independent set
en
dc.title
Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Indian Institute of Technology Bombay, India
-
dc.contributor.affiliation
California State University Los Angeles, United States of America (the)
-
dc.contributor.affiliation
Eindhoven University of Technology, Netherlands (the)
-
dc.relation.isbn
9783959773164
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
40th International Symposium on Computational Geometry (SoCG 2024)
-
tuw.container.volume
293
-
tuw.book.chapter
19
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publisher.doi
10.4230/LIPIcs.SoCG.2024.19
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0003-0454-3937
-
tuw.event.name
40th International Symposium on Computational Geometry (SoCG 2024)
en
tuw.event.startdate
11-06-2024
-
tuw.event.enddate
14-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athens
-
tuw.event.country
GR
-
tuw.event.presenter
Nöllenburg, Martin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
California State University Los Angeles
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence