<div class="csl-bib-body">
<div class="csl-entry">Le, M. T., & Tapia Garcia, S. (2024). <i>On (discounted) global Eikonal equations in metric spaces</i>. arXiv. https://doi.org/10.48550/arXiv.2410.00530</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/201606
-
dc.description.abstract
Eikonal equations in metric spaces have strong connections with the local slope operator (or the De Giorgi slope). In this manuscript, we explore and delve into an analogous model based on the global slope operator, expressed as $\lambda u + G[u] = \ell$, where \lambda is greater or equal to 0.
In strong contrast with the classical theory, the global slope operator relies neither on the local properties of the functions nor on the structure of the space, and therefore new insights are developed in order to analyze the above equation. Under mild assumptions on the metric space X and the given data $\ell$, we primarily discuss: (a) the existence and uniqueness of (pointwise) solutions; (b) a viscosity perspective and the employment of Perron's method to consider the maximal solution; (c) stability of the maximal solution with respect to both, the data $\ell$ and the discount factor $\lambda$. Our techniques provide a method to approximate solutions of Eikonal equations in metric spaces and a new integration formula based on the global slope of the given function.
en
dc.language.iso
en
-
dc.subject
Global slope
en
dc.subject
Metric space
en
dc.subject
Eikonal Equation
en
dc.subject
well-posedness
-
dc.title
On (discounted) global Eikonal equations in metric spaces
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.00530v1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.48550/arXiv.2410.00530
-
dc.description.numberOfPages
41
-
tuw.author.orcid
0009-0007-7396-1987
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.grantfulltext
none
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.orcid
0009-0007-7396-1987
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik