<div class="csl-bib-body">
<div class="csl-entry">Farsang, M., Lechner, M., Lung, D., Hasani, R., Rus, D., & Grosu, R. (2024). Learning with Chemical versus Electrical Synapses Does it Make a Difference? In <i>2024 IEEE International Conference on Robotics and Automation (ICRA)</i> (pp. 15106–15112). https://doi.org/10.1109/ICRA57147.2024.10611016</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/201674
-
dc.description.abstract
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems. Bio-electrical synapses directly transmit neural signals, by enabling fast current flow between neurons. In contrast, bio-chemical synapses transmit neural signals indirectly, through neurotransmitters. Prior work showed that interpretable dynamics for complex robotic control, can be achieved by using chemical synapses, within a sparse, bio-inspired architecture, called Neural Circuit Policies (NCPs). However, a comparison of these two synaptic models, within the same architecture, remains an unexplored area. In this work we aim to determine the impact of using chemical synapses compared to electrical synapses, in both sparse and all-to-all connected networks. We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions and in the presence of noise. The experiments highlight the substantial influence of the architectural and synaptic-model choices, respectively. Our results show that employing chemical synapses yields noticeable improvements compared to electrical synapses, and that NCPs lead to better results in both synaptic models.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
bio-inspired networks
en
dc.subject
synapses
en
dc.subject
neurons
en
dc.title
Learning with Chemical versus Electrical Synapses Does it Make a Difference?
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.relation.isbn
979-8-3503-8457-4
-
dc.description.startpage
15106
-
dc.description.endpage
15112
-
dc.relation.grantno
101034277
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.project.title
Technik für Biowissenschaften Doktoratsstudium
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICRA57147.2024.10611016
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0009-0002-9305-6507
-
tuw.author.orcid
0009-0003-7748-2335
-
tuw.author.orcid
0000-0002-9889-5222
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
en
tuw.event.startdate
13-05-2024
-
tuw.event.enddate
17-05-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Yokohama
-
tuw.event.country
JP
-
tuw.event.presenter
Farsang, Mónika
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Neurowissenschaften
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
3014
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
60
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Massachusetts Institute of Technology
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems