<div class="csl-bib-body">
<div class="csl-entry">Neunteufel, M., & Schöberl, J. (2024). The Hellan–Herrmann–Johnson and TDNNS methods for linear and nonlinear shells. <i>COMPUTERS & STRUCTURES</i>, <i>305</i>, Article 107543. https://doi.org/10.1016/j.compstruc.2024.107543</div>
</div>
-
dc.identifier.issn
0045-7949
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/201885
-
dc.description.abstract
In this paper we extend the recently introduced mixed Hellan–Herrmann–Johnson (HHJ) method for nonlinear Koiter shells to nonlinear Naghdi shells by means of a hierarchical approach. The additional shearing degrees of freedom are discretized by -conforming Nédélec finite elements entailing a shear locking free method. By linearizing the models we obtain in the small strain regime linear Kirchhoff–Love and Reissner–Mindlin shell formulations, which reduce for plates to the originally proposed HHJ and TDNNS methods for Kirchhoff–Love and Reissner–Mindlin plates, respectively. By interpolating the membrane strains into the so-called Regge finite element space we obtain locking-free arbitrary order shell methods. Additionally, the methods can be directly applied to structures with kinks and branched shells. Several numerical examples and experiments are performed validating the excellent performance of the proposed shell elements.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
COMPUTERS & STRUCTURES
-
dc.subject
shells
en
dc.subject
mixed finite elements
en
dc.subject
Hellan-Herrmann-Johnson method
en
dc.subject
TDNNS method
en
dc.subject
locking
en
dc.title
The Hellan–Herrmann–Johnson and TDNNS methods for linear and nonlinear shells
en
dc.type
Article
en
dc.type
Artikel
de
dc.type.category
Original Research Article
-
tuw.container.volume
305
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
75
-
tuw.researchTopic.value
25
-
dcterms.isPartOf.title
COMPUTERS & STRUCTURES
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.publisher.doi
10.1016/j.compstruc.2024.107543
-
dc.identifier.articleid
107543
-
dc.identifier.eissn
1879-2243
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0000-0002-7039-387X
-
wb.sci
true
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
80
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-7039-387X
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing