<div class="csl-bib-body">
<div class="csl-entry">Li, K., & Nastic, S. (2024). AttentionFunc: Balancing FaaS Compute across Edge-Cloud Continuum with Reinforcement Learning. In N. Kawaguchi, K. Yasumoto, T. Riedel, & A. Y. Ding (Eds.), <i>IoT ’23: Proceedings of the 13th International Conference on the Internet of Things</i> (pp. 25–32). ACM. https://doi.org/10.1145/3627050.3627066</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202185
-
dc.description.abstract
Serverless computing is emerging as a promising paradigm to manage compute in Edge-Cloud continuum. However, distributing and balancing the computational load (serverless functions) across the continuum remains a significant challenge. In this paper, we introduce AttentionFunc-a novel framework for decentralized and efficient function offloading and computation balancing in the Edge-Cloud continuum. The AttentionFunc framework strives to introduce a fully decentralized decision-making model that accounts for the multi-objective nature of serverless workflows, the limitations of shared resources in the Edge-Cloud environment, and the dynamic behaviors such as resource contentions or cooperations among serverless functions. In addition, AttentionFunc incorporates an innovative multi-Agent offloading model based on the Markov Decision Process (MDP), designed to minimize functions' execution time and costs. The application of MDP allows the framework to efficiently address these issues using deep reinforcement learning approaches, with an aim to significantly improve function completion latency. Furthermore, AttentionFunc pioneers an attention-based optimization mechanism for multi-Agent deep reinforcement learning. This mechanism permits DRL agents to reach a consensus with minimal coordination information, leading to substantial reductions in communication and computation overhead. We evaluate AttentionFunc and compare it against select relevant state-of-The-Art approaches. Our experiments and simulations show that AttentionFunc outperforms state-of-The-Art approaches in terms of 1) the completion latency (up to 44.2% reduction), 2) the function success rate (up to 43.3% increase). Additionally, we provide the results of many experiments with different MEC scenarios to highlight the components of our approach that influence the results. We conclude that our approach reduces the low-latency challenge faced by most offloading models and improves the successful completion rate of the function.
en
dc.language.iso
en
-
dc.subject
Edge-Cloud computing continuum
en
dc.subject
FaaS
en
dc.subject
Multi-Agent reinforcement learning
en
dc.subject
serverless functions offloading
en
dc.title
AttentionFunc: Balancing FaaS Compute across Edge-Cloud Continuum with Reinforcement Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Electronic Science and Technology of China, China
-
dc.contributor.editoraffiliation
Nagoya University, Japan
-
dc.contributor.editoraffiliation
Nara Institute of Science and Technology, Japan
-
dc.contributor.editoraffiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.editoraffiliation
Delft University of Technology, Netherlands (the)
-
dc.relation.isbn
9798400708541
-
dc.description.startpage
25
-
dc.description.endpage
32
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
IoT '23: Proceedings of the 13th International Conference on the Internet of Things
-
tuw.peerreviewed
true
-
tuw.relation.publisher
ACM
-
tuw.relation.publisherplace
New York, NY, United States
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1145/3627050.3627066
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-0410-6315
-
tuw.editor.orcid
0000-0002-0444-2290
-
tuw.editor.orcid
0000-0003-1579-3237
-
tuw.editor.orcid
0000-0003-4547-1984
-
tuw.editor.orcid
0000-0003-4173-031X
-
tuw.event.name
13th International Conference on the Internet of Things (IoT 2023)
en
tuw.event.startdate
07-11-2023
-
tuw.event.enddate
10-11-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Nagoya
-
tuw.event.country
JP
-
tuw.event.presenter
Nastic, Stefan
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0003-0410-6315
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering