<div class="csl-bib-body">
<div class="csl-entry">Sterzinger, R., Brenner, S., & Sablatnig, R. (2024). Drawing the Line: Deep Segmentation for Extracting Art from Ancient Etruscan Mirrors. In <i>Document Analysis and Recognition - ICDAR 2024</i> (pp. 39–56). https://doi.org/10.1007/978-3-031-70543-4_3</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202186
-
dc.description.abstract
Etruscan mirrors constitute a significant category within Etruscan art and, therefore, undergo systematic examinations to obtain insights into ancient times. A crucial aspect of their analysis involves the labor-intensive task of manually tracing engravings from the backside. Additionally, this task is inherently challenging due to the damage these mirrors have sustained, introducing subjectivity into the process. We address these challenges by automating the process through photometric-stereo scanning in conjunction with deep segmentation networks which, however, requires effective usage of the limited data at hand. We accomplish this by incorporating predictions on a per-patch level, and various data augmentations, as well as exploring self-supervised learning. Compared to our baseline, we improve predictive performance w.r.t. the pseudo-F-Measure by around 16%. When assessing performance on complete mirrors against a human baseline, our approach yields quantitative similar performance to a human annotator and significantly outperforms existing binarization methods. With our proposed methodology, we streamline the annotation process, enhance its objectivity, and reduce overall workload, offering a valuable contribution to the examination of these historical artifacts and other non-traditional documents.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Binarization
en
dc.subject
Cultural Heritage
en
dc.subject
Etruscan Art
en
dc.subject
Image Segmentation
en
dc.subject
Limited Data
en
dc.subject
Photometric Stereo
en
dc.title
Drawing the Line: Deep Segmentation for Extracting Art from Ancient Etruscan Mirrors
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-70543-4
-
dc.description.startpage
39
-
dc.description.endpage
56
-
dc.relation.grantno
P 33721-G
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Document Analysis and Recognition - ICDAR 2024
-
tuw.container.volume
14806
-
tuw.peerreviewed
true
-
tuw.project.title
Etruskische Spiegel in Österreich
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1007/978-3-031-70543-4_3
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0009-0001-0029-8463
-
tuw.author.orcid
0000-0001-6909-7099
-
tuw.author.orcid
0000-0003-4195-1593
-
tuw.event.name
International Conference on Document Analysis and Recognition (ICDAR 2024)
en
tuw.event.startdate
30-08-2024
-
tuw.event.enddate
04-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athen
-
tuw.event.country
GR
-
tuw.event.presenter
Sterzinger, Rafael
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.orcid
0009-0001-0029-8463
-
crisitem.author.orcid
0000-0001-6909-7099
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology