<div class="csl-bib-body">
<div class="csl-entry">Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. In <i>Chemnitz FE-Symposium 2024 : Programme, Collection of abstracts, List of participants</i> (pp. 52–52).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202227
-
dc.language.iso
en
-
dc.subject
adaptive finite element method
en
dc.subject
optimal convergence rates
en
dc.subject
cost-optimality
en
dc.subject
inexact solver
en
dc.subject
full linear convergence
en
dc.title
On full linear convergence and optimal complexity of adaptive FEM with inexact solver
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
52
-
dc.description.endpage
52
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Chemnitz FE-Symposium 2024 : Programme, Collection of abstracts, List of participants
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
tuw.publication.orgunit
E101-02-3 - Forschungsgruppe Computational PDEs
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-4546-5165
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.event.name
Chemnitz FE Symposium 2024
en
tuw.event.startdate
09-09-2024
-
tuw.event.enddate
11-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Chemnitz
-
tuw.event.country
DE
-
tuw.event.presenter
Bringmann, Philipp
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing