<div class="csl-bib-body">
<div class="csl-entry">Berducci, L., Yang, S., Mangharam, R., & Grosu, R. (2024). Learning Adaptive Safety for Multi-Agent Systems. In <i>2024 IEEE International Conference on Robotics and Automation (ICRA)</i> (pp. 2859–2865). https://doi.org/10.1109/ICRA57147.2024.10611037</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202364
-
dc.description.abstract
Ensuring safety in dynamic multi-agent systems is challenging due to limited information about the other agents. Control Barrier Functions (CBFs) are showing promise for safety assurance but current methods make strong assumptions about other agents and often rely on manual tuning to balance safety, feasibility, and performance. In this work, we delve into the problem of adaptive safe learning for multi-agent systems with CBF. We show how emergent behaviour can be profoundly influenced by the CBF configuration, highlighting the necessity for a responsive and dynamic approach to CBF design. We present ASRL, a novel adaptive safe RL framework, to fully automate the optimization of policy and CBF coefficients, to enhance safety and long-term performance through reinforcement learning. By directly interacting with the other agents, ASRL learns to cope with diverse agent behaviours and maintains the cost violations below a desired limit. We evaluate ASRL in a multi-robot system and competitive multi-agent racing, against learning-based and control-theoretic approaches. We empirically demonstrate the efficacy of ASRL, and assess generalization and scalability to out-of-distribution scenarios.
en
dc.language.iso
en
-
dc.subject
Reinforcement Learning
en
dc.subject
Artificial Intelligence
en
dc.subject
Safety-Critical Systems
en
dc.title
Learning Adaptive Safety for Multi-Agent Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Pennsylvania, United States of America (the)
-
dc.contributor.affiliation
University of Pennsylvania, United States of America (the)
-
dc.relation.isbn
9798350384574
-
dc.description.startpage
2859
-
dc.description.endpage
2865
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.linking
https://arxiv.org/abs/2309.10657
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICRA57147.2024.10611037
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-3497-6007
-
tuw.author.orcid
0000-0002-3388-8283
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
en
tuw.event.startdate
13-05-2024
-
tuw.event.enddate
17-05-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Yokohama
-
tuw.event.country
JP
-
tuw.event.presenter
Berducci, Luigi
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
University of Pennsylvania
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems